Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ito, Takashi; Higemoto, Wataru; Koda, Akihiro*; Nakamura, Jumpei*; Shimomura, Koichiro*
Interactions (Internet), 245(1), p.25_1 - 25_7, 2024/12
Maruyama, Shuhei; Yamamoto, Akio*; Endo, Tomohiro*
Annals of Nuclear Energy, 205, p.110591_1 - 110591_13, 2024/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Ishitsuka, Etsuo; Nagasumi, Satoru; Hasegawa, Toshinari; Kawai, Hiromi*; Wakisaka, Shinji*; Nagase, Sota*; Nakamura, Kento*; Yaguchi, Hiroki*; Ishii, Toshiaki; Nakano, Yumi*; et al.
JAEA-Technology 2024-008, 23 Pages, 2024/07
Five people from three universities participated in the 2023 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the analysis of HTTR core, the analysis of behavior on loss of forced cooling test, the analysis of Iodine deposition behavior in primary cooling system and the feasibility study of energy storage system for HTGRs. In the questionnaire after this training, there were impressions such as that it was useful as a work experience and some students found it useful for their own research. These impressions suggest that this training was generally evaluated as good.
Shikaze, Yoshiaki
Journal of Nuclear Science and Technology, 61(7), p.894 - 910, 2024/07
Times Cited Count:2 Percentile:51.90(Nuclear Science & Technology)Among the radioactive nuclides inside the nuclear reactor buildings emitted by the Fukushima Daiichi nuclear reactor accident, high-energy beta-ray sources, such as strontium-90 and yttrium-90, generate bremsstrahlung photons in the building materials, comprising the wall, floor, and interior structure. Therefore, evaluating the radiation dose of the bremsstrahlung to the workers in the nuclear reactor building is crucial for radiation protection. The precision of the evaluation calculation of the bremsstrahlung dose was investigated by comparing the Particle and Heavy Ion Transport code System (PHITS) and the GEometry ANd Tracking (GEANT4) simulation code results. In the calculation, behind various shielding plates (lead, copper, aluminum, glass, and polyethylene, with thicknesses ranging from 1.0 to 40 mm), the water cylinder was set as the evaluated material, the absorbed dose and the deposited energy spectrum by the bremsstrahlung photons were obtained, and the characteristics and differences for both simulation codes were investigated. In the comparison results of the deposited energy spectrum, the spectral shapes have consistent trends. In the energy range below several tens of keV, a peak is seen in the PHITS spectrum for the lead shielding material. In comparing the absorbed dose under various conditions of the shielding plate for generating bremsstrahlung photons, most results for both codes correlate within an 10% difference for 2.280 MeV beta-ray sources and an
20% difference for 0.5459 MeV beta-ray sources, except for
30% for 20 mm thick lead. Although there were differences in some cases, the evaluation results of the two simulation codes were concluded to correlate well with the above precision.
Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Mochimaru, Takanori*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo
Nuclear Instruments and Methods in Physics Research A, 1064, p.169465_1 - 169465_9, 2024/07
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Wright, T.*; Harada, Hideo; Kimura, Atsushi; 121 of others*
European Physical Journal A, 60(3), p.70_1 - 70_11, 2024/03
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Konno, Chikara
Journal of Nuclear Science and Technology, 61(1), p.121 - 126, 2024/01
Times Cited Count:1 Percentile:30.19(Nuclear Science & Technology)The JENDL-4.0/HE neutron and proton ACE files were produced in 2017 and those of 22 nuclei for neutron and 25 nuclei for proton were bundled in the PHITS code. Recently it was found that the following five data in the JENDL-4.0/HE neutron and proton ACE files had any problems; ACE files for N and
O, heating numbers, damage energy production cross sections, secondary neutron multiplicities and fission cross sections. Thus new JENDL-4.0/HE neutron and proton ACE files were produced with the problems fixed. This paper describes the problems and how to produce the new neutron and proton ACE files in detail.
Ito, Takashi; Higemoto, Wataru; Shimomura, Koichiro*
Physical Review B, 108(22), p.224301_1 - 224301_11, 2023/12
Times Cited Count:5 Percentile:44.45(Materials Science, Multidisciplinary)Fukahori, Tokio
INDC(JPN)-210 (Internet), 5 Pages, 2023/10
The U(n,f) cross section values were not correctly compiled in the ENDF format, and wrong values are disseminated in the JENDL/HE-2007 file. The high energy part of the
U(n,f) cross section for the JENDL/HE-2007 library was evaluated by using the results of the FISCAL code. The correct
U(n,f) cross section values of the JENDL/HE-2007 library above 200 MeV is given in this report.
Yamazaki, Yasuhiro*; Shinomiya, Keisuke*; Okumura, Tadaharu*; Suzuki, Kenji*; Shobu, Takahisa; Nakamura, Yuiga*
Quantum Beam Science (Internet), 7(2), p.14_1 - 14_12, 2023/05
Kido, Kentaro; Kaneko, Masashi
Journal of Computational Chemistry, 44(4), p.546 - 558, 2023/02
Times Cited Count:1 Percentile:6.80(Chemistry, Multidisciplinary)Teshigawara, Makoto; Ikeda, Yujiro*; Yan, M.*; Muramatsu, Kazuo*; Sutani, Koichi*; Fukuzumi, Masafumi*; Noda, Yohei*; Koizumi, Satoshi*; Saruta, Koichi; Otake, Yoshie*
Nanomaterials (Internet), 13(1), p.76_1 - 76_9, 2023/01
Times Cited Count:4 Percentile:54.88(Chemistry, Multidisciplinary)To enhance neutron intensity below cold neutrons, it is proposed that nanosized graphene aggregation could facilitate neutron coherent scattering under particle size conditions similar to nanodiamond. It might also be possible to use it in high neutron radiation conditions due to graphene's strong sp2 bonds. Using the RIKEN accelerator-driven compact neutron source and iMATERIA at J-PARC, we performed neutron measurement experiments, total neutron cross-section, and small-angle neutron scattering on nanosized graphene aggregation. The measured data revealed, for the first time, that nanosized graphene aggregation increased the total cross-sections and small-angle scattering in the cold neutron energy region, most likely due to coherent scattering, resulting in higher neutron intensities, similar to nanodiamond.
Matsumura, Taichi; Okumura, Keisuke; Fujita, Manabu*; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.
Radiation Physics and Chemistry, 199, p.110298_1 - 110298_8, 2022/10
Times Cited Count:3 Percentile:31.89(Chemistry, Physical)Kureta, Masatoshi; Yamagata, Yoji*; Miyakoshi, Ken*; Mashii, Tatsuya*; Miura, Yoshiaki*; Takahashi, Kazunori*
JAEA-Research 2022-007, 28 Pages, 2022/09
To enhance energy separation in a counter-current Ranque-Hilsch vortex tube, a newly designed hollow helical fin was inserted into the hot tube of the vortex tube. In this study, the effect of the fin on the energy separation was investigated using three types of the vortex tube, and then computational fluid dynamics (CFD) simulation has been conducted to understand the experimental results and discuss the flow structure in the vortex tube with the hollow helical fin. As a result, it was found from the experimental data that the fin effectively enhanced energy separation, and that the tube length could be shorten. When the inlet air pressure was 0.5 MPa, the maximum temperature difference from the inlet to the cold exit was 62.2C. The CFD code employing the Reynolds Stress Model (RSM) turbulence model was used to analyze the fluid dynamics in the vortex tube. As a result, it was confirmed that the temperature, velocity, and pressure distributions changed significantly at the stagnation point, and that the distributions in the tube with the fin were completely different from those without the fin. It was thought that a strong reversing helical vortex flow with small recirculating vortex structure formed between the fin end and the stagnation point on the cold exit side would enhance energy separation in the vortex tube with the hollow helical fin.
Ogawa, Fumio*; Nakayama, Yuta*; Hiyoshi, Noritake*; Hashidate, Ryuta; Wakai, Takashi; Ito, Takamoto*
Transactions of the Indian National Academy of Engineering (Internet), 7(2), p.549 - 564, 2022/06
The strain energy-based life evaluation method of Mod. 9Cr-1Mo steel under non-proportional multiaxial creep-fatigue loading is proposed. Inelastic strain energy densities were calculated as the areas inside the hysteresis loops. The effect of mean-stress has been experimentally considered and the relationship between inelastic strain energy densities and creep-fatigue lives was investigated. It was found from the investigation of hysteresis loops, the decrease in maximum stress leads to prolonged failure life, while stress relaxation during strain holding causes strength reduction. The correction method of inelastic strain energy density was proposed considering the effect of maximum stress in hysteresis loop and minimum stress during strain holding, and strain energy densities for uniaxial and non-proportional multiaxial loading were obtained. Based on these results, the mechanisms governing creep-fatigue lives under non-proportional multiaxial loading have been discussed.
Kido, Kentaro
International Journal of Quantum Chemistry, 121(21), p.e26781_1 - e26781_15, 2021/11
Times Cited Count:1 Percentile:12.26(Chemistry, Physical)Shobu, Takahisa; Shiro, Ayumi*; Muramatsu, Toshiharu*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 9(5), p.318 - 323, 2021/08
Laser welding has already been put into practical use for various metal materials because the irradiation area is very small and the control is easy. In this study, we evaluated strain, stress, deformation, etc. near the processing affected area by high-energy synchrotron radiation X-ray diffraction method, which is one of the problems of laser welding of different materials that are expected to be put into practical use. As a result of internal deformation measurement of the bonding of dissimilar materials of copper and iron, it was confirmed that the copper side with a high coefficient of linear expansion was hardly deformed, strong tensile strain on the iron side, and a plastic deformation region on the heat-affected zone. In addition, a retained austenite phase, which is thought to be caused by the mixture of copper, was observed in the plastic deformation region of iron, and further problems were clarified in the evaluation of material strength in the mixed metallic materials.
Myagmarjav, O.; Tanaka, Nobuyuki; Nomura, Mikihiro*; Noguchi, Hiroki; Imai, Yoshiyuki; Kamiji, Yu; Kubo, Shinji; Takegami, Hiroaki
Progress in Nuclear Energy, 137, p.103772_1 - 103772_7, 2021/07
Times Cited Count:8 Percentile:69.17(Nuclear Science & Technology)Harada, Masahide; Teshigawara, Makoto; Oi, Motoki; Oikawa, Kenichi; Takada, Hiroshi; Ikeda, Yujiro
Nuclear Instruments and Methods in Physics Research A, 1000, p.165252_1 - 165252_8, 2021/06
Times Cited Count:4 Percentile:45.69(Instruments & Instrumentation)This study explores high-energy neutron components of the extracted neutron beam at J-PARC pulsed neutron source using the foil activation method with threshold reactions. Foils of aluminum, gold, bismuth, niobium, and thulium were used to cover the neutron energy range from 0.3 MeV to 79.4 MeV. The experiment was performed using neutron beams of BL10 (NOBORU). The foils were irradiated by a neutron beam at 13.4 m from the moderator. To characterize high-energy neutron fields for irradiation applications, reaction rates in three different configurations with and without BC slit and Pb filter were examined. To compare the experiments with calculations given for the user, reaction rates for corresponding reactions were calculated by the PHITS code with the JENDL-3.2 and the JENDL dosimetry file. Although there was a systematic tendency in C/E (Calculation/Experiment) ratios for different threshold energies, which C/E ratio decreased as threshold energy increased up to 100 MeV, and all C/E ratios were in the range of 1.0
0.2. This indicated that high-energy neutron calculations were adequate for the analysis of experimental data for NOBORU users.
Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03