Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Awual, M. R.; Hasan, M. M.*
Sensors and Actuators B; Chemical, 206, p.692 - 700, 2015/01
Times Cited Count:230 Percentile:99.68(Chemistry, Analytical)Lee, C. G.; Iguchi, Kazunari; Inagawa, Jun; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Usuda, Shigekazu
Journal of Radioanalytical and Nuclear Chemistry, 272(2), p.299 - 302, 2007/05
Times Cited Count:47 Percentile:93.59(Chemistry, Analytical)no abstracts in English
Usuda, Shigekazu; Yasuda, Kenichiro; Kokubu, Yoko; Esaka, Fumitaka; Lee, C. G.; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Hirayama, Fumio; Fukuyama, Hiroyasu; et al.
International Journal of Environmental Analytical Chemistry, 86(9), p.663 - 675, 2006/08
Times Cited Count:14 Percentile:39.68(Chemistry, Analytical)The IAEA introduced the environmental sample analysis method, as a powerful tool to detect undeclared nuclear activities, into strengthened safeguards system. The principle of the method is that nuclear signatures can be evidenced if trace amount of nuclear materials in environmental samples taken from inside and outside of nuclear facilities are accurately analyzed. Currently, isotope ratios of uranium and plutonium in "swipe" samples are measured, which are collected in nuclear facilities. In future, the subject of environmental sample analysis will expand to soil, sediment, vegetation, water and airborne dust taken from outside of the nuclear facilities. If physical and chemical form of the nuclear materials is identified, we may estimate their origin, treatment process and migration behavior. This paper deals with the developed analytical techniques for the safeguards environmental samples, the current R&D on techniques related to estimation of the physical and chemical form, and possible analytical methodologies applicable to ultra-trace amounts of nuclear materials.
Iguchi, Kazunari; Esaka, Konomi; Lee, C. G.; Inagawa, Jun; Esaka, Fumitaka; Onodera, Takashi; Fukuyama, Hiroyasu; Suzuki, Daisuke; Sakurai, Satoshi; Watanabe, Kazuo; et al.
Radiation Measurements, 40(2-6), p.363 - 366, 2005/11
Times Cited Count:11 Percentile:59.29(Nuclear Science & Technology)In particle analysis for safeguards environmental samples, the fission track technique is very important to detect sub-micrometer particles containing uranium. In the technique the authors developed, the particles were recovered onto the polycarbonate membrane filter. The filter was dissolved in solvent and dried to form a thin film of detector, in which the particles were confined. After thermal neutron irradiation and etching, the particles of interest in the detector were easily identified with fission tracks, and were picked up for isotope ratio analysis. It was found, however, that the particles in the vicinity of the detector surface may fall off during the etching process. Therefore, optimization of the etching condition is required. In this work, the effects of etching time and enrichment of uranium in particles were investigated. Preliminary results suggest that etching time should be shorter with the increase in the enrichment.
Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.
Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10
no abstracts in English
Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo; Esaka, Fumitaka; Miyamoto, Yutaka; Yasuda, Kenichiro; Gunji, Katsubumi*; Yamamoto, Yoichi; Takahashi, Tsukasa; Sakurai, Satoshi; et al.
JAERI-Tech 2002-103, 141 Pages, 2003/02
The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for ultra trace analyses of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. The CLEAR meets double requirements of a cleanroom and for handling of nuclear materials. Much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using corrosive acids. The air conditioning and purification system, experimental equipment, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials in environmental samples.
Takai, Konomi; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo
JAERI-Conf 2002-002, 98 Pages, 2002/03
The Colloquium on Ultra-trace Analysis of Environmental Samples was held on November 28, 2001 at CLEAR (Clean Laboratory for Environmental Analysis and Research) located at JAERI Tokai Establishment. Eight presentations were made at the colloquium, covering wide area of the relevant works such as development of analytical technology, environmental sample analysis and application to the safeguards. Each presentation was followed by animated discussion. This report assembles the full papers for the presentations reported at the colloquium.