Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
井岡 郁夫; 三輪 幸夫; 辻 宏和; 米川 実; 高田 文樹; 星屋 泰二
JSME International Journal, Series A, 45(1), p.51 - 56, 2002/01
FBRの構造材に対する代表的な破損モードの1つに、繰り返し熱応力に起因するクリープ疲労がある。しかし、照射材のクリープ疲労特性についてはほとんど報告されていない。ここでは、SUS304鋼照射材の低サイクル疲労試験を行い、最大引張側での保持時間が疲労寿命に及ぼす影響を調べた。供試材は熱間圧延したSUS304鋼である。歪波形は完全両振り対称三角波,試験は真空中,550,歪速度0.1%/sで行った。最大引張側での保持時間は、360s,3600sとした。中性子照射は、550
で1.4-3.4x10
n/m
(E
0.1MeV)まで行い、弾き出し損傷量及びHe生成量は、それぞれ約1~2dpa及び約1~11appmであった。保持時間のない場合、照射により疲労寿命は低下した。照射材の疲労寿命は、保持時間の増加とともに低下した。疲労寿命の低下は、非照射材の場合と同程度であった。クリープ疲労寿命予測法(時間消費則,延性消耗則)により照射材の疲労寿命は、ファクター2の範囲で予測できた。
佐藤 聡; 高津 英幸; 真木 紘一*; 関 泰
J. Fusion Eng. Des., 30(3), p.1076 - 1080, 1996/12
国際熱核融合実験炉(ITER)排気ダクト周囲のトロイダルコイル(TFC)に対する遮蔽解析を、2次元SN放射線輸送解析コードDOT3.5を用いて、ダイバータ遮蔽体が無い場合と有る場合に関して行った。ダイバータ遮蔽体が無い場合、排気ダクト周囲のTECの核的応答を1桁減少させるには、排気ダクトの壁厚を約160mm増加させる必要があり、TFCの遮蔽設計目標値を満足するには、約480mmの厚さの排気ダクト壁が必要である。140mm幅のスリットを有する480mm厚さのダイバータ遮蔽体を、排気ダクト入口の前に設置することによって、TFCの核的応答は、約1/16になった。ダイバータ遮蔽体が有る場合には、TFCの遮蔽設計目標値を満足するには、約290mm厚さの排気ダクト壁が必要である。
斉藤 誠次*; 杉原 正芳; 藤沢 登; 阿部 哲也; 上田 孝寿*
Nucl.Technol./Fusion, 4, p.498 - 507, 1983/00
核融合炉のダイバータ室内における中性粒子の挙動を解析し、ヘリウム排気に必要な排気速度を評価するために、モンテカルロ法により中性粒子の密度分布および温度分布を計算するプログラムを開発した。特に、排気ダクト内の中性粒子の挙動を合わせて解析できるプログラム構成とし、排気ダクトに流入する高温の中性粒子が排気効率に及ぼす影響を詳細に解析した。INTORを対象とした数値計算では、ダイバータ内のスクレイプオフプラズマの密度が10/cm
を超えると、必要排気速度は10
l/S以下と極めて低くできる可能性を示した。