Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ono, Hirokazu; Takayama, Yusuke*
Geomechanics for Energy and the Environment, 41, p.100636_1 - 100636_14, 2025/03
Times Cited Count:0 Percentile:0.00(Energy & Fuels)Onishi, Takashi; Koyama, Shinichi*; Yokoyama, Keisuke; Morishita, Kazuki; Watanabe, Masashi; Maeda, Shigetaka; Yano, Yasuhide; Oki, Shigeo
Nuclear Engineering and Design, 432, p.113755_1 - 113755_17, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Fukushima, Masahiro; Ando, Masaki; Nagaya, Yasunobu
Nuclear Science and Engineering, 199(1), p.18 - 41, 2025/01
Times Cited Count:1 Percentile:62.55(Nuclear Science & Technology)A series of integral experiments were conducted at FCA of JAEA, simulating LWR cores with a tight lattice cell of highly enriched MOX fuel containing more than 15% fissile plutonium. The three experimental configurations were constructed using foamed polystyrene with different void fractions to clarify the prediction accuracy of neutronic calculation codes and nuclear data among various neutron spectra. The nuclear characteristics measured in the experiments were criticality, moderator void reactivity worths, and sample reactivity worths. The preliminary analyses on experiments were conducted using a deterministic calculation code conventionally used for fast reactors with JENDL-4.0. Most reactivity worth calculations correlated well with the experimental values. Specifically for the softer neutron spectra configurations, the treatment of ultrafine energy groups obviously improved the prediction accuracy of the deterministic calculations. Furthermore, reference calculations were performed with MVP3 code by modeling the experimental setup in detail, confirming the validity of the deterministic calculations.
Ono, Hirokazu
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 31(2), p.140 - 143, 2024/12
In the geological disposal of high-level radioactive waste, after emplacement of an EBS, the near-field environment is affected by processes such as heat release from the waste, groundwater infiltration into the EBS, swelling and deformation of the buffer material, and chemical reactions between groundwater and minerals. It is crucial to develop simulation codes to evaluate such coupled thermal-hydraulic-stress-chemical (THMC) processes for safety assessment of geological disposal. The full-scale vertical-emplacement EBS experiment (Horonobe EBS experiment) has been undertaken in the 350 m gallery of the Horonobe Underground Research Laboratory (URL) with the Horonobe geological environment. In the Horonobe EBS experiment, various sensors were installed in the buffer and backfill material to obtain the data required to evaluate coupled THMC processes in near-field. In Task C of the Horonobe International Project (HIP), the dismantling experiment of the Horonobe EBS experiment will be carried out and the data obtained from this experiment will be used to understand the coupled processes and to evaluate the simulation code.
Wakui, Takashi; Saito, Shigeru; Futakawa, Masatoshi
Materials, 17(23), p.5925_1 - 5925_14, 2024/12
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)The ductile properties of irradiated materials are one of the important indicators related to their structural integrity. Indentation tests are used for evaluating the ductile properties easily and rapidly. Constants in the material constitutive equation were identified via inverse analysis using the Kalman filter, such that the numerical experimental results reproduced the indentation test results. Numerical tensile experiments were conducted using stress-strain curves with the identified constants to obtain nominal stress-strain curves. Furthermore, two methods were proposed for evaluating the total elongation. Evaluated minimum total elongation was 10 %. The evaluation results of ion-irradiated materials were similar to the tensile test results of irradiated materials.
Ishikado, Motoyuki*; Takahashi, Ryuta*; Yamauchi, Yasuhiro*; Nakamura, Masatoshi*; Ishimaru, Sora*; Yamauchi, Sara*; Kawamura, Seiko; Kira, Hiroshi*; Sakaguchi, Yoshifumi*; Watanabe, Masao; et al.
JPS Conference Proceedings (Internet), 41, p.011010_1 - 011010_7, 2024/05
Fukushima, Masahiro; Okajima, Shigeaki*; Mukaiyama, Takehiko*
Journal of Nuclear Science and Technology, 61(4), p.478 - 497, 2024/04
Times Cited Count:3 Percentile:65.16(Nuclear Science & Technology)A series of integral experiments was conducted to evaluate the fission and the capture cross- sections of transuranic (TRU) nuclides at the fast critical facility FCA of the Japan Atomic Energy Agency (JAEA). The experiments were carried out using seven uranium-fueled assemblies of the FCA. The neutron energy spectra of the core regions were adjusted so as to change from an intermediate neutron spectrum to a fast neutron spectrum on an assembly-by-assembly basis. The integral data measured with these experimental configurations provide some neutron energy characteristics: 1) fission rate ratios (FRRs) of Np,
Pu,
Pu,
Am,
Am, and
Cm relative to
Pu by using absolutely calibrated fission chambers, 2) small sample reactivity worths (SRWs) of
Np,
Pu,
Pu,
Am, and
Am where oxide powders of around 15 to 20 grams were used, 3) criticalities, and 4) spectral indices such as fission rate ratios of
U relative to
U. In this paper, details of the SRW measurements are reported, and the latest Japanese Evaluated Nuclear Data Library JENDL-5 is tested by using the integral data obtained in systematically varied neutron energy spectra.
Fukushima, Masahiro; Ando, Masaki; Nagaya, Yasunobu
Nuclear Science and Engineering, 15 Pages, 2024/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Sono, Hiroki; Izawa, Kazuhiko; Yoritsune, Tsutomu; Suyama, Kenya; Tonoike, Kotaro
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 7 Pages, 2023/10
Japan Atomic Energy Agency (JAEA) has constructed and operated nine critical assemblies. Of these nine facilities as of 2023, four have already been dismantled, four are under decommissioning, and only STACY is active but under temporally shutdown. STACY is scheduled to restart in 2024 after core modification from a "critical assembly using uranium nitrate solution fuel" to a "general-purpose critical assembly using uranium fuel rods and light-water moderator." The immediate objective of new STACY is to acquire criticality data for fuel debris removal from the damaged reactors in Fukushima-Daiichi Nuclear Power Plant. After the critical experiment program regarding fuel debris, the new STACY is expected to be used for various R&D on next-generation power reactors and others. In addition, the new STACY will serve as an educational and training reactor. These activities are useful not only for Japan but also for international collaborative research and joint use.
Zhang, H.*; Umehara, Yutaro*; Yoshida, Hiroyuki; Mori, Shoji*
International Journal of Heat and Mass Transfer, 211, p.124253_1 - 124253_13, 2023/09
Times Cited Count:10 Percentile:77.16(Thermodynamics)Suzuki, Seiya; Arai, Yoichi; Okamura, Nobuo; Watanabe, Masayuki
Journal of Nuclear Science and Technology, 60(7), p.839 - 848, 2023/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The fuel debris, consisting of nuclear fuel materials and reactor structural materials, generated in the accident of Fukushima Daiichi Nuclear Power Plant can become deteriorated like rocks under the changes of environmental temperature. Although the fuel debris have been cooled by water for 10 years, they are affected by seasonal and/or day-and-night temperature changes. Therefore, in evaluating the aging behavior of the fuel debris, it is essential to consider the changes in environmental temperature. Assuming that the fuel debris are deteriorated, radioactive substances that have recently undergone micronization could be eluted into the cooling water, and such condition may affect defueling methods. We focused on the effect of repeated changes in environmental temperature on the occurrence of cracks, and an accelerated test using simulated fuel debris was carried out. The length of the crack increases with increasing number of heat cycle; therefore, the fuel debris become brittle by stress caused by thermal expansion and contraction. In conclusion, it was confirmed that the mechanical deterioration of the fuel debris is similar to that of rocks or minerals, and it became possible to predict changes in the length of the crack in the simulated fuel debris and environmental model.
Ota, Hirokazu*; Ogata, Takanari*; Yamano, Hidemasa; Futagami, Satoshi; Shimada, Sadae*; Yamada, Yumi*
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05
Yokoyama, Kenji
EPJ Web of Conferences, 281, p.00004_1 - 00004_10, 2023/03
In Japan, development of adjusted nuclear data library for fast rector application based on the cross-section adjustment method has been conducted since the early 1990s. The adjusted library is called the unified cross-section set. The first version was developed in 1991 and is called ADJ91. Recently, the integral experimental data were further expanded to improve the design prediction accuracy of the core loaded with minor actinoids and/or degraded Pu. Using the additional integral experimental data, development of ADJ2017 was started in 2017. In 2022, the latest unified cross-section set AJD2017R was developed based on JENDL-4.0 by using 619 integral experimental data. An overview of the latest version with a review of previous ones will be shown. On the other hand, JENDL-5 was released in 2021. In the development of JENDL-5, some of the integral experimental data used in ADJ2017R were explicitly utilized in the nuclear data evaluation. However, this is not reflected in the covariance data. This situation needs to be considered when developing a unified cross-section set based on JENDL-5. Preliminary adjustment calculation based on JENDL-5 is performed using C/E (calculation/experiment) values simply evaluated by a sensitivity analysis. The preliminary results will be also discussed.
Zhang, H.*; Mori, Shoji*; Hisano, Tsutomu*; Yoshida, Hiroyuki
International Journal of Multiphase Flow, 159, p.104342_1 - 104342_15, 2023/02
Times Cited Count:11 Percentile:64.32(Mechanics)Sun, Haomin; Leblois, Y.*; Gelain, T.*; Porcheron, E.*
Journal of Nuclear Science and Technology, 59(11), p.1356 - 1369, 2022/11
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In severe accident scenarios of PWR, containment spray can be employed to washout the aerosol of radioactive materials, retaining them in the containment. Therefore, it is crucial to correctly predict the washout efficiency for safety assessment. For a PWR, a high spray coverage ratio ( 84%-95%) is required. However, experimental studies on the washout with such a high coverage ratio in a large vessel are quite limited. To understand such a washout phenomenon for model development, aerosol washout experiments are performed in a large vessel with not only aerosol measurements but also spray droplet characterizations. The spray coverage ratios are experimentally confirmed to be compatible with a real PWR. The washout features are investigated in detail. The model in MELCOR is examined using the measured aerosol removal rate, showing the removal rate tendency against particle diameters being reproduced. Although a significant underestimation occurs for large particles, a satisfactory agreement is obtained for smaller ones (
0.52
m in diameter) corresponding to the minimum removal rate and around.
Doi, Daisuke
Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08
Soler, J. M.*; Meng, S.*; Moreno, L.*; Neretnieks, I.*; Liu, L.*; Kekl
inen, P.*; Hokr, M.*;
ha, J.*; Vete
n
k, A.*; Reimitz, D.*; et al.
Geologica Acta, 20(7), 32 Pages, 2022/07
Times Cited Count:3 Percentile:48.39(Geology)Task 9B of the SKB Task Force on Modelling of Groundwater Flow and Transport of Solutes in fractured rock focused on the modelling of experimental results from the LTDE-SD in situ tracer test performed at the sp
Hard Rock Laboratory in Sweden. Ten different modelling teams provided results for this exercise, using different concepts and codes. Three main types of modelling approaches were used: (1) analytical solutions to the transport-retention equations, (2) continuum-porous-medium numerical models, and (3) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains and microfracture distributions). The modelling by the different teams allowed the comparison of many different model concepts, especially in terms of potential zonations of rock properties (porosity, diffusion, sorption), such as the presence of a disturbed zone at the rock and fracture surface, the potential effects of micro- and cm-scale fractures.
Nakamura, Shoji; Toh, Yosuke; Kimura, Atsushi; Hatsukawa, Yuichi*; Harada, Hideo
Journal of Nuclear Science and Technology, 59(7), p.851 - 865, 2022/07
Times Cited Count:1 Percentile:10.40(Nuclear Science & Technology)The present study performed integral experiments of I using a fast-neutron source reactor "YAYOI" of the University of Tokyo to validate evaluated nuclear data libraries. The iodine-129 sample and flux monitors were irradiated by fast neutrons in the Glory hole of the YAYOI reactor. Reaction rates of
I were obtained by measurement of decay gamma-rays emitted from
I. The validity of the fast-neutron flux spectrum in the Glory hole was confirmed by the
ratios of the reaction rates of flux monitors. The experimental reaction rate of
I was compared with that calculated with both the fast-neutron flux spectrum and evaluated nuclear data libraries. The present study revealed that the evaluated nuclear data of
I cited in JENDL-4.0 should be reduced as much as 18% in neutron energies ranging from 10 keV to 3 MeV, and supported the reported data by Noguere
below 100 keV.
Maekawa, Fujio; Takei, Hayanori
Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.206 - 210, 2022/05
In developing an accelerator-driven nuclear transmutation system (ADS), it is necessary to solve technical issues related to proton beams, such as the development of materials that can withstand high-intensity proton beams and the characterization of subcritical cores driven by proton beams. Therefore, at the high-intensity proton accelerator facility J-PARC, a transmutation experimental facility that actually conducts various tests using a high-intensity proton beam is being planned. This paper introduces the outline and future direction of the transmutation experimental facility.
Gupta, S.*; Herranz, L. E.*; Lebel, L. S.*; Sonnenkalb, M.*; Pellegrini, M.*; Marchetto, C.*; Maruyama, Yu; Dehbi, A.*; Suckow, D.*; Krkel
, T.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03