Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kitamura, Akira; Akahori, Kuniaki; Nagata, Masanobu*
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.83 - 93, 2020/12
Direct disposal of spent nuclear fuel (SNF) in deep underground repositories (hereafter "direct disposal") is a concept that disposal canisters stored fuel assemblies dispose without reprocessing. Behavior of radionuclide release from SNF must be different from that from vitrified glass. The present study established a methodology on determination of instant release fraction (IRF) of radionuclides from SNF, which is the one of the parameters on radionuclide release based on the latest safety assessment reports in other countries, especially for IRF values proportional to a fission gas release ratio (FGR). Recommended and maximum values of FGR have been estimated using the fuel performance code FEMAXI-7 after collecting FGR values on Japanese SNFs. Furthermore, recommended and maximum values of IRF for Japanese SNFs used in a pressurized water reactor (PWR) have been estimated using the presently obtained FGR values and experimentally obtained IRF values on foreign SNFs. The recommended and maximum IRF values obtained in the present study have been compared with those of the latest safety assessment reports in other countries.
Ueta, Shohei; Shaimerdenov, A.*; Gizatulin, S.*; Chekushina, L.*; Honda, Masaki*; Takahashi, Masashi*; Kitagawa, Kenichi*; Chakrov, P.*; Sakaba, Nariaki
Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10
A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO (less than 10% of U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel.
Ueta, Shohei; Emori, Koichi; Tobita, Tsutomu*; Takahashi, Masashi*; Kuroha, Misao; Ishii, Taro*; Sawa, Kazuhiro
JAERI-Research 2003-025, 59 Pages, 2003/11
In the safety design requirements for the High Temperature Engineering Test Reactor (HTTR) fuel, it is determined that "the as-fabricated failure fraction shall be less than 0.2%" and "the additional failure fraction shall be small through the full service period". Therefore the failure fraction should be quantitatively evaluated during the HTTR operation. In order to measure the primary coolant activity, primary coolant radioactivity signals the in safety protection system, the fuel failure detection (FFD) system and the primary coolant sampling system are provided in the HTTR. The fuel and fission product behavior was evaluated based on measured data in the rise-to-power tests (1) to (4). The measured fractional releases are constant at 210 up to 60% of the reactor power, and then increase to 710 at full power operation. The prediction shows good agreement with the measured value. These results showed that the release mechanism varied from recoil to diffusion of the generated fission gas from the contaminated uranium in the fuel compact matrix.
Sawa, Kazuhiro; Sumita, Junya; Ueta, Shohei; Takahashi, Masashi; Tobita, Tsutomu*; Hayashi, Kimio; Saito, Takashi; Suzuki, Shuichi*; Yoshimuta, Shigeharu*; Kato, Shigeru*
JAERI-Research 2002-012, 39 Pages, 2002/06
no abstracts in English
Sawa, Kazuhiro; Minato, Kazuo; Fukuda, Kosaku
JAERI-Research 96-063, 34 Pages, 1996/11
no abstracts in English
Sawa, Kazuhiro; Tanaka, Toshiyuki
JAERI-Research 95-071, 23 Pages, 1995/11
no abstracts in English
Sawa, Kazuhiro; Shiozawa, Shusaku; Fukuda, Kosaku;
Journal of Nuclear Science and Technology, 29(9), p.842 - 850, 1992/09
no abstracts in English
; ; ; Ikawa, Katsuichi; Iwamoto, K.; Yamamoto, Katsumune; ;
JAERI-M 84-054, 65 Pages, 1984/03
no abstracts in English