Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fukuda, Kodai
Annals of Nuclear Energy, 208(1), p.110748_1 - 110748_10, 2024/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Terada, Atsuhiko; Nagaishi, Ryuji
Journal of Nuclear Science and Technology, 61(8), p.1135 - 1154, 2024/08
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In order to elucidate ventilation and exhaust of hydrogen leaked in a partially open space practically, the effects of outer wind on them were studied analytically by using a CFD code in the room of experimental Half-size Hallway model, which has a H release hole on the bottom, one vent on the roof and another vent on the side: external air flowed in the room from the Door vent and then H
was discharged outside from the Roof vent. The H
concentration distribution in the room was divided into two layers at the height of Door vent, with a high concentration layer above it and a low concentration layer below it, forming a stratified interface. When the wind speed blown into the room increased, the combination of the Realizable k-e; turbulence model and the turbulence Schmidt number of 1.0 improved the reproducibility of the analysis results of H
concentration distribution. The trial analysis suggested that the concern that wind would increase the indoor H
concentration could be reduced by using the plate with a simple structure in which two plates were crossed on the Roof vent.
Hamdani, A.; Abe, Satoshi; Ishigaki, Masahiro; Shibamoto, Yasuteru; Yonomoto, Taisuke
Progress in Nuclear Energy, 153, p.104415_1 - 104415_16, 2022/11
Times Cited Count:3 Percentile:48.92(Nuclear Science & Technology)Nakamura, Hideo; Bentaib, A.*; Herranz, L. E.*; Ruyer, P.*; Mascari, F.*; Jacquemain, D.*; Adorni, M.*
Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10
Okagaki, Yuria; Yonomoto, Taisuke; Ishigaki, Masahiro; Hirose, Yoshiyasu
Fluids (Internet), 6(2), p.80_1 - 80_17, 2021/02
Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*
Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02
Times Cited Count:43 Percentile:98.23(Mechanics)A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.
Herranz, L. E.*; Jacquemain, D.*; Nitheanandan, T.*; Sandberg, N.*; Barr, F.*; Bechta, S.*; Choi, K.-Y.*; D'Auria, F.*; Lee, R.*; Nakamura, Hideo
Progress in Nuclear Energy, 127, p.103432_1 - 103432_14, 2020/09
Times Cited Count:4 Percentile:18.87(Nuclear Science & Technology)Trianti, N.; Motegi, Kosuke; Sugiyama, Tomoyuki; Maruyama, Yu
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 9 Pages, 2020/08
Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki
Nuclear Technology, 205(1-2), p.119 - 127, 2019/01
Times Cited Count:4 Percentile:36.10(Nuclear Science & Technology)To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.
Ono, Ayako; Suzuki, Takayuki*; Yoshida, Hiroyuki
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07
The mechanism of critical heat flux (CHF) for higher system pressure remains to be clarified, even though it is important to evaluate the CHF for the light water reactor (LWR) which is operated under the high pressure condition. In this study, the process of bubble coalescence was simulated by using a computational multi-fluid dynamics (CMFD) simulation code TPFIT under various system pressure in order to investigate the behavior of bubbles as a basic study. The growth of bubbles was simulated by blowing of vapor from a tiny orifice simulating bubble bottom. One or four orifices were located on the bottom surface in this simulation study. The numerical simulations were conducted by varying the pressure and temperature.
Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki
Journal of Nuclear Science and Technology, 54(10), p.1036 - 1045, 2017/10
Times Cited Count:5 Percentile:40.90(Nuclear Science & Technology)To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium. The effect of use of the unstructured mesh was also investigated by the two analyses using structured and unstructured mesh.
Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki; Watanabe, Akira*
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 12 Pages, 2017/09
To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.
Guo, L.*; Morita, Koji*; Tobita, Yoshiharu
Journal of Nuclear Science and Technology, 53(2), p.271 - 280, 2016/02
Times Cited Count:9 Percentile:61.24(Nuclear Science & Technology)Kato, Yuki; Yoshida, Hiroyuki; Yokoyama, Ryotaro*; Kanagawa, Tetsuya*; Kaneko, Akiko*; Monji, Hideaki*; Abe, Yutaka*
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05
Yoshida, Hiroyuki; Nagatake, Taku; Takase, Kazuyuki; Kaneko, Akiko*; Monji, Hideaki*; Abe, Yutaka*
Mechanical Engineering Journal (Internet), 1(4), p.TEP0025_1 - TEP0025_11, 2014/08
Ebihara, Kenichi
JAERI-Research 2005-004, 121 Pages, 2005/03
This report is the JAERI's report version of the doctor thesis by the author. In this report, first, the validity and usefulness of the application of the two-phase fluid model of the lattice-gas method and the lattice Boltzmann method(LBM) are examined. On the basis of the examination, next, the horizontal stratified two-phase flow that is the fundamental and important flow is simulated by the HCZ model which is one of the two-phase fluid model of the LBM. It is seen that the interfacial growth of the HCZ model satisfies the Kelvin-Helmholtz instability theory and reproduces the theoretical two-phase flow regime map of Taitel and Dukler(T-D map). It is found that more superficial flow velocity of the rare phase is necessary in the channel with the narrow width. The HCZ model can also simulate the droplet generation accompanying more complex interfacial phenomena and reproduce the experimental correlation of Ishii and Grolmes in the range of the distribution of the experimental data.
Takase, Kazuyuki; Yoshida, Hiroyuki; Ose, Yasuo*; Akimoto, Hajime
WIT Transactions on Engineering Sciences, Vol.50, p.183 - 192, 2005/00
no abstracts in English
Ebihara, Kenichi; Watanabe, Tadashi
Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition (IMECE '04) (CD-ROM), 9 Pages, 2004/11
This paper describes the numerical simulation of the interfacial growth of the stratified wavy two-phase flow in the horizontal rectangular channel. The influence of the channel width upon the growth of the interfacial wave was evaluated by the several simulations for the different channel width. The numerical simulation model adopted in this paper is a one-component two-phase fluid model of the lattice Boltzmann method. The wave growth was observed and the dimensionless numbers that characterize the two-phase flow state were measured during the computations. The relation between the wave growth and the dimensionless numbers, which characterize the flow state, was compared with that in the flow pattern map proposed by Taitel and Dukler. It was verified in the case of the wide channel width that the simulated relation was almost in agreement with that in the flow pattern map. It was shown that the narrower the channel width became, the more mass flow rate of the rare phase the interfacial growth needed and the obtained relation deviated from that in the flow pattern map.
Ebihara, Kenichi
Tsukuba Daigaku Daigakuin Shisutemu Joho Kogaku Kenkyuka Hakase Gakui Rombun, 134 Pages, 2004/09
In this thesis, first the liquid-gas models of the lattice method are examined by applying them to two-phase flow simulations. Next the liquid-gas model(the HCZ model) of the lattice Boltzmann method is applied to the three-dimensional simulation of the horizontal stratified two-phase flow. The following results are obtained. (1)The two- and three- dimensional interface simulated by the HCZ model satisfies the Kelvin-Helmholtz instability theory. (2)In the simulation of the interfacial growth in the rectangular channel, it is found that the relation between the interfacial growth and the flow state is in agreement with the flow regime map proposed theoretically by Taitel and Dukler. (3)It is also found that the three dimensionality becomes remarkable and the interfacial growth needs more flow rate of the rare phase than that of the theoretical flow regime map when the channel width is narrower. (4)In the droplet creation simulation, it is found that the relation between the droplet creation and the flow state simulates the experimental correlation proposed by Ishii and Grolmes.
Hattori, Hirofumi*; Sato, Hiroshi; Nagano, Yasutaka*
Nihon Kikai Gakkai Rombunshu, B, 70(696), p.1919 - 1926, 2004/08
no abstracts in English