Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Flux dependence of carbon erosion and implication for ITER

Roth, J.*; Kirschner, A.*; Bohmeyer, W.*; Brezinsek, S.*; Cambe, A.*; Casarotto, E.*; Doerner, R.*; Gauthier, E.*; Federici, G.*; Higashijima, Satoru; et al.

Journal of Nuclear Materials, 337-339, p.970 - 974, 2005/03

 Times Cited Count:95 Percentile:98.93(Materials Science, Multidisciplinary)

In the frame work of the EU Task Force on Plasma-Wall Interaction and the International Tokamak Physics Activity an attempt was made to establish a possible dependence of the chemical erosion yield of carbon on the ion flux, $$Phi$$, involving ion beam experiments, plasma simulators, and fusion devices. After data normalization a fit using Bayesian probability analysis was performed yielding a decrease of the erosion yield with $$Phi$$$$^{-0.54}$$ at high ion fluxes. With this dependence on ion flux a comprehensive description is available for chemical erosion as function of energy, temperature and ion flux. Using this dependence the erosion and redeposition of carbon in the ITER divertor can be calculated using the ERO code and the steady-state plasma scenario given by the ITER team. The resulting gross and net erosion rates are compared to previous estimates using a constant erosion yield of 1.5%. The use of the complete parameter dependence results in an order of magnitude lower erosion, most strongly determined by the temperature dependence and the reduction at the highest fluxes.

Journal Articles

Flux dependence of carbon chemical erosion by deuterium ions

Roth, J.*; Preuss, R.*; Bohmeyer, W.*; Brezinsek, S.*; Cambe, A.*; Casarotto, E.*; Doerner, R.*; Gauthier, E.*; Federici, G.*; Higashijima, Satoru; et al.

Nuclear Fusion, 44(11), p.L21 - L25, 2004/11

 Times Cited Count:93 Percentile:91.38(Physics, Fluids & Plasmas)

Chemical erosion of carbon has been studied in ion beam experiments, and the yield values are available as a function of ion energy and surface temperature. ITER divertor condition, however, cannot be simulated by ion beam. For extrapolating to ITER, the erosion must be investigated in plasma simulators and in SOL or divertors of present fusion devices. In the past, erosion values were reported, but the values showed a wide scatter as a function of ion flux, $$Phi$$. Therefore, a joint attempt was made through the EU Task Force on Plasma-Wall Interaction and the International Tokamak Physics Activity (ITPA) to clarify the flux dependence. For each data point the local plasma conditions were normalized to impact energy of 30 eV, the data were selected for a surface temperature close to the maximum yield or to room temperature, and the diagnostic was calibrated in-situ. Through this procedure, the previous large scatter could be drastically reduced. A fit using Bayesian probability analysis was performed yielding a decrease of the erosion yield with $$Phi$$$$^{-0.54}$$ at high ion fluxes.

Journal Articles

In-situ observation of surface blistering in silicon by deuterium and helium ion irradiation

Igarashi, Shinichi; Muto, Shunsuke*; Tanabe, Tetsuo*; Aihara, Jun; Hojo, Kiichi

Surface & Coatings Technology, 158-159, p.421 - 425, 2002/09

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1