Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
sp
HRLSawada, Atsushi; Sakamoto, Kazuhiko*; Watahiki, Takanori*; Imai, Hisashi*
SKB P-17-06, 154 Pages, 2023/08
Park, Y.-J.*; Sawada, Atsushi; Ozutsumi, Takenori*; Tanaka, Tatsuya*; Hashimoto, Shuji*; Morita, Yutaka*
Proceedings of 3rd International Conference on Discrete Fracture Network Engineering (DFNE 2022) (Internet), 8 Pages, 2022/00
Safety analysis for underground disposal facilities for high-level radioactive waste requires thorough understanding of long-term groundwater flow and nuclide migration processes in geologic media. In the coastal subsurface systems, groundwater flow is defined by the complex interactions between freshwater of meteoric origin and denser saline water from the sea. In addition, sea levels are expected to fluctuate significantly due to a transgression and regression of the sea over the millions of years for safety analysis. This study presents long-term evolution of groundwater environment such as salinity concentration and flow velocity with focus of the interaction between fractures and matrix blocks in regional and near-field scale analysis framework for groundwater flow and nuclide migration for underground disposal facilities in hypothetical fractured crystalline coastal systems.
Elena, K.*; Teklu, H.*; Wang, Y.*; Iwatsuki, Teruki; Ozaki, Yusuke
no journal, ,
In this study, Discrete Fracture Network Model (DFN) is built based on the fracture data observed in the Mizunami Underground Research Laboratory. 297 fractures data with discharge is analyzed for the estimation of stochastic quantity under the assumption that those fractures are permeable and have an great impact on the hydraulic conductivity field. Both models of fracture and hydraulic conductivity around the Closure Test Drift at the depth of 500m are generated from derived stochastic models. The hydraulic model is input into the numerical simulation. The matching of calculated and observed inflow into research tunnel indicates the validity of generated model and modeling approach for fractured rock. These results are a part of results in Task C of Decovalex2019.
Hirota, Shogo*; Onoe, Hironori*; Saegusa, Hiromitsu*; Ishibashi, Masayuki*; Tagawa, Yoichi*; Hane, Koji*; Sawada, Atsushi
no journal, ,