Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Sakai, Takaaki*
Nuclear Engineering and Design, 432, p.113785_1 - 113785_16, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Establishing an evaluation method for the gas entrainment (GE) of argon cover gas due to surface vortices is required in terms of safety design of sodium-cooled fast reactors. To modify the evaluation model in an in-house evaluation tool for GE, StreamViewer, a modified evaluation model on the pressure distribution along the vortex center line (PVL model) was proposed to identify the vortex center lines by connecting continuous vortex center points from the suction port to the surface and evaluate gas core length based on the balance between the hydrostatic pressure and the pressure decrease distribution along the vortex center line. PVL model was applied the three-dimensional numerical analysis results for the experiments where a plate induced unsteady traveling vortices in the open channel flow. Consequently, the GE evaluation using StreamViewer with PVL model could reproduce the relation between the inlet flow velocity and the gas core length in the unsteady vortex flow experiments.
Song, K.*; Ito, Kei*; Ito, Daisuke*; Odaira, Naoya*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05
Gas entrainment (GE) phenomena caused by a free surface vortex may cause the disturbance in core power of sodium-cooled fast reactor (SFR). For this reason, the entrained gas flow rate by the GE should be evaluated accurately for the practical safety design of SFRs. In this study, for the purpose of examining the applicability of CFD for the accurate evaluation of GE phenomena, a CFD is applied to the simulation of the free surface vortex and accompanied GE phenomena in a cylindrical vessel with a suction pipe, and the CFD results and the experimental data of the GE are compared. As a result, the CFD and experiments show similar two-phase flow pattern inside the suction pipe, and the shape of the gas core at the free surface is also very similar. Therefore, it is confirmed that the CFD can predict the GE phenomena triggered by a free surface vortex properly and accurately within the acceptable error range.
Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki
Konsoryu, 36(1), p.63 - 69, 2022/03
On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, entrained gas flow rate a simple gas entrainment experiment is conducted with focusing on effect of pressure difference between upper and lower tanks. Pressure difference between upper and lower tanks are controlled by changing gas pressure in lower tank. As a result, it is confirmed that the entrained gas flow rate increases with increasing pressure difference between upper and lower tanks. By visualization of swirling annular flow in suction pipe, it is also observed that pressure drop in suction pipe increases with increase in entrained gas flow rate, which implies that entrained gas flow rate can be predicted by evaluation model based on pressure drop in swirling annular flow region.
Ito, Kei; Ohno, Shuji; Koizumi, Yasuo*; Kawamura, Takumi*
Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 10 Pages, 2014/12
Nakamura, Hideo; Ito, Kazuhiro*; Kukita, Yutaka*; ; ; Maekawa, Hiroshi; Katsuta, Hiroji
Journal of Nuclear Materials, 258-263, p.440 - 445, 1998/00
Times Cited Count:7 Percentile:53.35(Materials Science, Multidisciplinary)no abstracts in English
Nakamura, Hideo; ; Kukita, Yutaka*; ; ; Maekawa, Hiroshi
Eighth Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-8), 3, p.1268 - 1275, 1997/00
no abstracts in English
Ote, Naosuke*; Koizumi, Yasuo*; Kamide, Hideki; Ohno, Shuji; Ito, Kei
no journal, ,
A sodium-cooled fast breeder reactor is now at the development stage in Japan. One concern for safety is cover gas entrainment into the sodium coolant. The gas entrainment rate into liquid by the vortex formed on the free surface was examined experimentally. Liquid flowed into a cylindrical vessel from a wall tangentially. Swirl flow was formed in the vessel, and then liquid drained from the bottom outlet of the vessel. A hollow vortex was formed on the free surface in the test vessel. The air was entrained under the free surface of the vortex and carried away from the bottom of the vessel. The flow state of the gas entertainment was visually observed by using a high speed video camera. The gas entrainment rate into liquid was measured. In the previous study, test fluid was water. Kerosene and 20 cSt silicone oil were newly introduced as the test fluid to examine the effect of the physical properties on the gas entertainment phenomena.