Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09
Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Proceedings of Asian Symposium on Risk Assessment and Management 2022 (ASRAM 2022) (Internet), 11 Pages, 2022/12
Shaimerdenov, A.*; Gizatulin, S.*; Dyussambayev, D.*; Askerbekov, S.*; Ueta, Shohei; Aihara, Jun; Shibata, Taiju; Sakaba, Nariaki
Nuclear Engineering and Technology, 54(8), p.2792 - 2800, 2022/08
Times Cited Count:8 Percentile:82.31(Nuclear Science & Technology)Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi
Journal of Nuclear Science and Technology, 59(4), p.424 - 430, 2022/04
Times Cited Count:1 Percentile:11.05(Nuclear Science & Technology)Narukawa, Takafumi
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(11), p.780 - 785, 2021/11
no abstracts in English
Narukawa, Takafumi; Udagawa, Yutaka
Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10
Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of
U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.
Ueta, Shohei; Sasaki, Koei; Arita, Yuji*
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(8), p.615 - 620, 2021/08
no abstracts in English
Udagawa, Yutaka; Tasaki, Yudai
JAEA-Data/Code 2021-007, 56 Pages, 2021/07
Japan Atomic Energy Agency (JAEA) has released FEMAXI-8 in 2019 as the latest version of the fuel performance code FEMAXI, which has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly normal operation conditions and anticipated transient conditions. This report summarizes a newly developed model to analyze intragranular fission gas behaviors considering size distribution of gas bubbles and their dynamics. While the intragranular fission gas behavior models implemented in the previous FEMAXI versions have supported only treating single bubble size for a given fuel element, the new model supports multiple gas groups according to their size and treats their dynamic behaviors, making the code more versatile. The model was first implemented as a general module that takes arbitrary number of bubble groups and spatial mesh division for a given fuel grain system. An interface module to connect the model to FEMAXI-8 was then developed so that it works as a 2 bubble groups model, which is the minimum configuration of the multi-grouped model to be operated with FEMAXI-8 at the minimum calculation cost. FEMAXI-8 with the new intragranular model was subjected to a systematic validation calculation against 144 irradiation test cases and recommended values for model parameters were determined so that the code makes reasonable predictions in terms of fuel center temperature, fission gas release, etc. under steady-state and power ramp conditions.
Nagase, Fumihisa; Narukawa, Takafumi; Amaya, Masaki
JAEA-Review 2020-076, 129 Pages, 2021/03
Each light-water reactor (LWR) is equipped with the Emergency Core Cooling System (ECCS) to maintain the coolability of the reactor core and to suppress the release of radioactive fission products to the environment even in a loss-of-coolant accident (LOCA) caused by breaks in the reactor coolant pressure boundary. The acceptance criteria for ECCS have been established in order to evaluate the ECCS performance and confirm the sufficient safety margin in the evaluation. The limits defined in the criteria were determined in 1975 and reviewed based on state-of-the-art knowledge in 1981. Though the fuel burnup extension and necessary improvements of cladding materials and fuel design have been conducted, the criteria have not been reviewed since then. Meanwhile, much technical knowledge has been accumulated regarding the behavior of high-burnup fuel during LOCAs and the applicability of the criteria to the high-burnup fuel. This report provides a comprehensive review of the history and technical bases of the current criteria and summarizes state-of-the-art technical findings regarding the fuel behavior during LOCAs. The applicability of the current criteria to the high-burnup fuel is also discussed.
Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.
JAEA-Technology 2020-008, 16 Pages, 2020/08
As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with
U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(7), p.782 - 791, 2020/07
Times Cited Count:7 Percentile:57.65(Nuclear Science & Technology)Ueta, Shohei; Mizuta, Naoki; Sasaki, Koei; Sakaba, Nariaki; Ohashi, Hirofumi; Yan, X.
Mechanical Engineering Journal (Internet), 7(3), p.19-00571_1 - 19-00571_12, 2020/06
JAEA has been progressing to design HTGR fuels for not only small-type practical HTGRs but also VHTR proposed in GIF which can be utilized for various purposes with high-temperature heat at 750 to 950 C. To increase economy of these HTGRs, JAEA has been upgrading the design method for the HTGR fuel, which can maintain their integrities at the burnup of three to four times higher than that of the conventional HTTR fuel. Design principles and specifications of various concepts of the high burnup HTGR fuels designed by JAEA are reported. As the latest results on post-irradiation examinations of the high burnup HTGR fuel progressing in a framework of international collaboration with Kazakhstan, irradiation shrinkage rate of the fuel compact as a function of fast neutron fluence was obtained at around 100 GWd/t. Furthermore, the future R&Ds needed for the high burnup HTGR fuel are described based on these experimental results.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(1), p.68 - 78, 2020/01
Times Cited Count:3 Percentile:27.28(Nuclear Science & Technology)Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(12), p.1063 - 1072, 2019/12
Times Cited Count:8 Percentile:60.35(Nuclear Science & Technology)no abstracts in English
Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09
Narukawa, Takafumi; Amaya, Masaki
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.912 - 921, 2019/09
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(7), p.650 - 660, 2019/07
Times Cited Count:14 Percentile:79.50(Nuclear Science & Technology)Udagawa, Yutaka; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(6), p.461 - 470, 2019/06
Times Cited Count:11 Percentile:71.47(Nuclear Science & Technology)no abstracts in English
Ueta, Shohei; Mizuta, Naoki; Sasaki, Koei; Sakaba, Nariaki; Ohashi, Hirofumi; Yan, X.
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
JAEA has been progressing to design HTGR fuels for not only small-type practical HTGRs but also VHTR proposed in GIF which can be utilized for various purposes with high-temperature heat at 750 to 950 C. To increase economy of these HTGRs, JAEA has been upgrading the design method for the HTGR fuel, which can maintain their integrities at the burnup of three to four times higher than that of the conventional HTTR fuel. Design principles and specifications of various concepts of the high burnup HTGR fuels designed by JAEA are reported. As the latest results on post-irradiation examinations of the high burnup HTGR fuel progressing in a framework of international collaboration with Kazakhstan, irradiation shrinkage rate of the fuel compact as a function of fast neutron fluence was obtained at around 100 GWd/thm. Furthermore, the future R&Ds needed for the high burnup HTGR fuel are described based on these experimental results.