Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Udagawa, Yutaka; Mihara, Takeshi; Taniguchi, Yoshinori; Kakiuchi, Kazuo; Amaya, Masaki
Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05
Times Cited Count:3 Percentile:30.60(Nuclear Science & Technology)Taniguchi, Yoshinori; Udagawa, Yutaka; Amaya, Masaki
Annals of Nuclear Energy, 139, p.107188_1 - 107188_7, 2020/05
Times Cited Count:1 Percentile:10.11(Nuclear Science & Technology)Sasajima, Hideo; Sugiyama, Tomoyuki; Nakamura, Takehiko*; Fuketa, Toyoshi
JAERI-Research 2004-022, 113 Pages, 2004/12
Results from power burst tests, GK-1 and GK-2, conducted at the NSRR, are summarized. The tests were performed on a 1414 PWR fuel rod irradiated to a burnup of 42 MWd/kgU in the Genkai unit #1 of Kyushu Electric Power Co., Inc. The instrumented test fuel rod in a double-container-type capsule was subjected to the pulse-irradiation with stagnant water cooling condition at 0.1 MPa and 293 K. Deposited energy and peak fuel enthalpy were 505 J/g and 389 J/g in the Test GK-1, and 490 J/g and 377 J/g in the Test GK-2, respectively. During the pulse-irradiations, DNB occurred and the cladding surface temperature reached 581 K and 569 K in the Tests GK-1 and -2, respectively. The maximum cladding hoop strain was 2.7% in the Test GK-1 and 1.2% in the Test GK-2. However, the test fuel rods did not fail. Estimated fission gas releases during the pulse-irradiations were 11.7% and 7.0% in the Tests GK-1 and -2, respectively.
Yamashita, Toshiyuki; Kuramoto, Kenichi; Akie, Hiroshi; Nakano, Yoshihiro; Shirasu, Noriko; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Omichi, Toshihiko*
Journal of Nuclear Science and Technology, 39(8), p.865 - 871, 2002/08
Times Cited Count:26 Percentile:81.96(Nuclear Science & Technology)Research on the plutonium rock-like oxide (ROX) fuels and their once-through burning in light water reactors has been performed to establish an option for utilizing and disposing effectively the excess plutonium. The ROX fuel is a sort of the inert matrix fuels and consists of mineral-like compounds such as yttria stabilized zirconia, spinel and corundum. A particle-dispersed fuel was devised to reduce damage by heavy fission fragments. Some preliminary results on swelling, fractional gas release and microstructure change for five ROX fuels were obtained from the irradiation test and successive post-irradiation examinations. Inherent disadvantages of the Pu-ROX fuel cores could be improved by adding 238U or 232Th as resonant materials, and all improved cores showed a nearly the same characteristics as the conventional UO2 core during transient conditions. The threshold enthalpy of the ROX fuel rod failure was found to be comparable to the fresh UO2 rod by pulse-irradiation tests simulating reactivity initiated accident conditions.
Nakamura, Takehiko; Takahashi, Masato*; Yoshinaga, Makio
JAERI-Research 2000-048, 77 Pages, 2000/11
no abstracts in English