Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka
Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Sawa, Kazuhiro*; Haseda, Masaya*; Aihara, Jun
Nihon Kikai Gakkai Rombunshu (Internet), 89(921), p.22-00314_1 - 22-00314_6, 2023/05
In high temperature gas-cooled reactors (HTGRs), Tri-isotropic (TRISO)-coated fuel particles are employed as fuel. In the high burnup coated fuel particle, stress due to fission gas pressure and irradiation-induced pyrolytic carbon (PyC) shrinkage is introduced into the coating layers and consequently the stress could cause failure of coating layers under high burnup irradiation condition. A failure model has developed to predict failure fraction of TRISO-coated particle under high burnup irradiation. In the model, failure probability is strongly dependent on the irradiation characteristics of PyC. This paper describes the outline of the failure model and evaluation result of high burnup fuel irradiation experiment by the model.
Oka, Hiroshi*; Kaito, Takeji; Ikusawa, Yoshihisa; Otsuka, Satoshi
Nuclear Engineering and Design, 370, p.110894_1 - 110894_8, 2020/12
Times Cited Count:1 Percentile:10.11(Nuclear Science & Technology)The objective of this study is to evaluate the reliability of a cumulative damage fraction (CDF) analysis for the prediction of fuel pin breach in fast rector using experimentally obtained fuel pin breach data for the first time. Six breached fuel pins were obtained from steady state irradiation in the EBR-II. Post irradiation examinations revealed that FP gas pressure was the main cause of creep damage in cladding, and that the stress contribution from FCMI was negligible. CDFs evaluated for these pins using in-reactor creep rupture equation, taking into account the irradiation history of cladding temperature and hoop stress due to FP gas pressure, were in the range of 0.7 to 1.4 at the occurrence of breach. This shows clearly that fuel pin breach occurs when the CDF approaches 1.0. The results indicate that CDF analysis would be a reliable method for the prediction of fuel pin breach when appropriate material strength and environmental effects are adopted.
Udagawa, Yutaka; Fuketa, Toyoshi*
Comprehensive Nuclear Materials, 2nd Edition, Vol.2, p.322 - 338, 2020/08
Udagawa, Yutaka; Mihara, Takeshi; Taniguchi, Yoshinori; Kakiuchi, Kazuo; Amaya, Masaki
Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05
Times Cited Count:3 Percentile:30.60(Nuclear Science & Technology)Taniguchi, Yoshinori; Udagawa, Yutaka; Amaya, Masaki
Annals of Nuclear Energy, 139, p.107188_1 - 107188_7, 2020/05
Times Cited Count:1 Percentile:10.11(Nuclear Science & Technology)Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio
JAEA-Data/Code 2019-018, 22 Pages, 2020/01
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.
Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(12), p.1063 - 1072, 2019/12
Times Cited Count:8 Percentile:62.42(Nuclear Science & Technology)no abstracts in English
Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09
Sato, Ikken
Journal of Nuclear Science and Technology, 56(5), p.394 - 411, 2019/05
Times Cited Count:11 Percentile:73.65(Nuclear Science & Technology)Water columns were adopted in the pressure measurement system of Fukushima-Daiichi Unit-3. Part of these water columns evaporated during the accident condition jeopardizing correct understanding on actual pressure. Through comparison of RPV (Reactor Pressure Vessel) and S/C pressures with D/W pressure, such water-column effect was evaluated. Correction for this effect was developed enabling clarification of slight pressure difference among RPV, S/C and D/W. This information was then integrated with other available data such as, water level, CAMS and environmental dose rate, into an interpretation of accident focusing on RPV and PCV pressurization/depressurization and radioactive material release to environment. It is suggested that dryout of in-vessel and ex-vessel debris was likely causing pressure decrease. S/C water poured into pedestal heated by relocated debris was the likely cause of pressurization. Cyclic reflooding of pedestal debris and dryout was likely.
Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09
Shinozaki, Takashi; Mihara, Takeshi; Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki
JAEA-Research 2014-025, 34 Pages, 2014/12
EDC test is a test method on the mechanical property of fuel cladding tube, and it focuses on the stress condition generated by PCMI under a RIA. We conducted EDC tests which simulate the mechanical conditions during a RIA by using the unirradiated cladding tubes which simulate hydride rim. Circumferential residual strains observed in post-test specimens tended to decrease with increasing the hydrogen concentration in the test cladding tubes and the thickness of the hydride rim. We also prepared RAG tube and performed EDC tests on it. It was observed that circumferential total strains at failure tended to decrease with increasing pre-crack depth on the outer surface of RAG tube specimen. We conducted biaxial stress tests by applying longitudinal tensile load onto RAG tube specimens. It was observed that circumferential total strains at failure under biaxial stress conditions tended to decrease compared to the results under uniaxial tensile condition.
Nakamura, Takehiko*; Fuketa, Toyoshi; Sugiyama, Tomoyuki; Sasajima, Hideo
Journal of Nuclear Science and Technology, 41(1), p.37 - 43, 2004/01
Times Cited Count:19 Percentile:74.89(Nuclear Science & Technology)Transient deformation of high burnup BWR fuel rods was measured and failure limit was examined under simulated RIA conditions. Brittle cladding failure occurred at a small strain of about 0.4% during an early phase of the pulse irradiation tests at the NSRR. Strain rates were in an order of tens %/s at the time of the failure. Comparison of the results with thermal expansion of pellets suggested that the deformation was caused by thermal expansion of the pellets. In other words, the influence of fission gases in the pellets was small in the early phase of the deformation. Separate effect tests were conducted to examine influence of the cladding temperature on the failure behavior of cladding. Influence of the pulse width on the failure threshold was discussed in terms of the strain rate, magnitude of the deformation and temperature of the cladding for high burnup BWR fuel rods under RIA conditions.
Ueta, Shohei; Emori, Koichi; Tobita, Tsutomu*; Takahashi, Masashi*; Kuroha, Misao; Ishii, Taro*; Sawa, Kazuhiro
JAERI-Research 2003-025, 59 Pages, 2003/11
In the safety design requirements for the High Temperature Engineering Test Reactor (HTTR) fuel, it is determined that "the as-fabricated failure fraction shall be less than 0.2%" and "the additional failure fraction shall be small through the full service period". Therefore the failure fraction should be quantitatively evaluated during the HTTR operation. In order to measure the primary coolant activity, primary coolant radioactivity signals the in safety protection system, the fuel failure detection (FFD) system and the primary coolant sampling system are provided in the HTTR. The fuel and fission product behavior was evaluated based on measured data in the rise-to-power tests (1) to (4). The measured fractional releases are constant at 210 up to 60% of the reactor power, and then increase to 710 at full power operation. The prediction shows good agreement with the measured value. These results showed that the release mechanism varied from recoil to diffusion of the generated fission gas from the contaminated uranium in the fuel compact matrix.
Sawa, Kazuhiro; Ueta, Shohei; Iyoku, Tatsuo
Proceedings of International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP 2003) (CD-ROM), 10 Pages, 2003/09
This paper provides present status of research and development for the coated fuel particle (CFPs) including the advanced ZrC-CFP. Current HTGR employs so-called TRISO-CFPs with SiC layer. In safety design of the HTGR fuels, it is important to retain fission products within CFPs so that their release to primary coolant does not exceed an acceptable level. The behavior of TRISO-CFPs has been investigated through experiments and reactor operation. These data show excellent performance of the TRISO-CFPs when they are correctly fabricated. On the other hand, the crystalline material comprising the SiC layer has a tendency to decompose at high temperature. The transition temperatures of beta-SiC (as-deposited) to alpha-SiC vary from 1600 to 2200C. ZrC is one of the transition metal carbides which are characterized by the high melting point and the thermodynamic stability etc. The CFPs with CVD-ZrC coatings have been investigated including the fabrication processes and characterization techniques developments.
Nakamura, Takehiko; Sasajima, Hideo; Yamashita, Toshiyuki; Uetsuka, Hiroshi
Journal of Nuclear Materials, 319, p.95 - 101, 2003/06
Times Cited Count:2 Percentile:18.70(Materials Science, Multidisciplinary)Pulse irradiation tests under simulated RIA conditions were performed with three types of ROX fuels. Single phase YSZ, homogeneous mixture of YSZ/spinel and YSZ particle dispersed in spinel type ROX fuels were pulse irradiated in the Nuclear Safety Research Reactor (NSRR). Mode and threshold of the fuel failure including its consequences were investigated under the RIA conditions. The fuel failure occurred in a burst type mode in all the three types of ROX fuel tests with considerable fuel melting. Even though the mode was quite different from those of UO fuel, failure threshold enthalpies of the ROX fuels were close to that of UO fuel at about 10 GJ m. The consequence of the failure of the ROX fuels was different from the one of UO fuel, because molten fuel dispersal occurred at lower enthalpies in the ROX fuel tests. Change of the fuel structure and material interaction in the transient heating conditions were examined through optical and secondary electron microscopy, and electron probe micro analysis.
Sawa, Kazuhiro; Tobita, Tsutomu*
Nuclear Technology, 142(3), p.250 - 259, 2003/06
Times Cited Count:13 Percentile:64.08(Nuclear Science & Technology)The maximum burnup of the first-loading fuel of the HTTR is limited to 3.6%FIMA to certify its integrity during the operation. In order to investigate fuel behavior under extended burnup condition, irradiation tests were performed. The thickness of buffer and SiC layers of the irradiated fuel particles were increased to keep their integrity up to over 5%FIMA. The fuel compacts were irradiated in independent capsules at the HFIR of ORNL, and at the JMTR of JAERI, respectively. The comparison of measured and calculated (R/B)s showed that additional failures occurred in both irradiation tests. A pressure vessel failure model analysis showed that no tensile stresses acted on the SiC layers even at the end of irradiation and no pressure vessel failure occurred in the intact particles. The presumed failure mechanisms are additional through-coatings failure of as-fabricated SiC-failed particles or an excessive increase of internal pressure by the accelerated irradiation. The further study is needed to clarify the failure mechanism.
Haruyama, Mitsuo; Shitomi, Hajimu; Nakamura, Kiyoshi
JAERI-Tech 2003-025, 29 Pages, 2003/03
As one of the technical cooperation activity based on the Annex III, the Cooperation in the Area of Reactor Physics and Technology, of the Arrangement between the National Nuclear Energy Agency (BATAN) and the Japan Atomic Energy Research Institute (JAERI), the modification of the Fuel Failure Detection System (FFDS) was carried out by the joint work at the Multi-purpose Reactor RSG-G.A. Siwabessy (RSG-GAS). The system takes the delayed neutron detection method. The design requirements of the modification are, (1) to save the system units currently used and the spares on hand as long as practicable, and / or (2) to replace the system units with those easy to maintain or to obtain at the markets. The modified system obtained around twice of higher sensitivity for delayed neutron detection than before and more reliable monitoring possibility with redundancy. The specification, installation, adjustment methods and characteristics of the modified system and the modus operandi of FFDS at high power reactor operation are described in this paper.
Nakamura, Jinichi; Sugiyama, Tomoyuki; Nakamura, Takehiko; Kanazawa, Toru; Sasajima, Hideo
JAERI-Tech 2003-008, 32 Pages, 2003/03
no abstracts in English
Kusagaya, Kazuyuki*; Sugiyama, Tomoyuki; Nakamura, Takehiko; Uetsuka, Hiroshi
JAERI-Tech 2002-105, 24 Pages, 2003/01
High-temperature and high-pressure influence on the destructive force at the fuel rod failure in reactivity-initiated-accident (RIA) simulating experiment using the NSRR (Nuclear Safety Research Reactor) is estimated, for the purpose of mechanical designing of a new experimental capsule for simulating the temperature and pressure condition of typical commercial BWR. When knowledge on pressure impulse and water hammer, which are the cause of the destructive force, and steam property dependence on temperature and pressure are taken into account, one can qualitatively estimate that the destructive force in the BWR operation condition is smaller than that in the room temperature and atmospheric pressure condition. The water column velocity, which determines the impact by water hammer, is further investigated quantitatively by modeling the experimental system and the water hammer phenomenon. As a result, the maximum velocity of water column in the BWR operation condition is calculated to be only about 10% of that in the room temperature and atmospheric pressure condition.