Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
谷口 良徳; 三原 武; 垣内 一雄; 宇田川 豊
Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01
被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)A reactivity-initiated accident (RIA)-simulated test CN-1 on a high-burnup 64 GWd/t mixed-oxide fuel rod sheathed with M5 cladding was conducted at the Nuclear Safety Research Reactor, resulting in fuel failure. A small opening with slight ballooning deformation characterized the post-test visual appearance of the test fuel rod. Simulation using fuel performance codes FEMAXI-8/RANNS predicted rod survival under early phase loading induced by pellet-cladding mechanical interaction and subsequent boiling transition, and the cladding surface temperature measured online confirmed the occurrence of boiling transition. The experimental observation and simulation indicate that the failure was caused by a high-temperature rupture following increased rod-internal pressure. The RANNS sensitivity analysis revealed that a mechanical state parameter dedicated to predicting plastic instability might be an effective index for evaluating the risk of rupture failure during RIAs.
宇田川 豊; 三原 武; 谷口 良徳; 垣内 一雄; 天谷 政樹
Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05
被引用回数:3 パーセンタイル:29.11(Nuclear Science & Technology)This paper reports a computer-code analysis on the base-irradiation behavior of the chromia-and-alumina-doped BWR rod irradiated to 64 GWd/t in Oskarshamn-3, Sweden, and subjected to the reactivity-initiated-accident (RIA) test OS-1, which resulted in a fuel failure due to pellet-cladding mechanical interaction (PCMI) at the lowest fuel-enthalpy increase in all the BWR tests ever performed. The inverse calculation which utilized post-irradiation examination data as its constraint conditions revealed that the OS-1 rod had very likely experienced more intense PCMI loading due to higher swelling rate during base irradiation than other BWR rods subjected to previous RIA tests and thus had been prone to experience enhanced radial-hydride formation. The significant difference in the cladding hoop-stress more than 50 MPa discriminates the OS-1 rod from other BWR rods and supports the interpretation that enhanced radial-hydrides formation differentiated the PCMI-failure behavior observed in the test OS-1 from the previous BWR-fuel tests.
谷口 良徳; 宇田川 豊; 天谷 政樹
Annals of Nuclear Energy, 139, p.107188_1 - 107188_7, 2020/05
被引用回数:1 パーセンタイル:9.57(Nuclear Science & Technology)The fuel-failure-limit data obtained in the simulated reactivity-initiated-accident experiment SPERT-CDC 859 (SPERT859) has entailed a lot of discussions if it represents fuel-failure behavior of typical commercial LWRs for its specific pre-irradiation condition and fuel state. The fuel-rod conditions before and during SPERT859 were thus assessed by the fuel-performance codes FEMAXI-8 and RANNS with focusing on cladding corrosion and its effect on the failure limit of the test rod. The analysis showed that the fuel cladding was probably excessively corroded even when the influential calculation conditions such as fuel swelling and creep models were determined so that the lowest limit of the cladding oxide layer thickness was captured. Such assumption of excessive cladding corrosion during pre-irradiation well explains not only the test-rod state before pulse irradiation but also the fuel-failure limit observed. Such understanding undermines anew the representativeness of the test data as a direct basis of safety evaluation for LWR fuels.
宇田川 豊
no journal, ,
This presentation reports a computer-code analysis on the base-irradiation behavior of the chromia-and-alumina-doped BWR rod irradiated to 64 GWd/t in Oskarshamn-3, Sweden, and subjected to the reactivity-initiated-accident (RIA) test OS-1, which resulted in a fuel failure due to pellet-cladding mechanical interaction (PCMI) at the lowest fuel-enthalpy increase in all the BWR tests ever performed. The inverse calculation which utilized post-irradiation examination data as its constraint conditions revealed that the OS-1 rod had very likely experienced more intense PCMI loading due to higher swelling rate during base irradiation than other BWR rods subjected to previous RIA tests and thus had been prone to experience enhanced radial-hydride formation. The significant difference in the PCMI-related parameters between the OS-1 rod and other BWR rods supports the interpretation that enhanced radial-hydrides formation differentiated the PCMI-failure behavior observed in the test OS-1 from the previous BWR-fuel tests.