Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ayoub, A.*; Wainwright, Haruko*; Sansavini, G.*; Gauntt, R.*; Saito, Kimiaki
iScience (Internet), 27(4), p.109485_1 - 109485_15, 2024/04
Times Cited Count:2 Percentile:86.32(Multidisciplinary Sciences)Abe, Tomohisa; Yoshimura, Kazuya; Sanada, Yukihisa
Aerosol and Air Quality Research, 21(7), p.200636_1 - 200636_11, 2021/07
Times Cited Count:4 Percentile:21.49(Environmental Sciences)Ando, Masaki; Matsuda, Norihiro; Saito, Kimiaki
Nihon Genshiryoku Gakkai Wabun Rombunshi, 20(1), p.34 - 39, 2021/03
We measured count rates and air dose rates at 11 measurement points where the influence of the Fukushima Dai-ichi Nuclear Power Plant accident could be ignored to obtain parameters for a background equation applying to KURAMA-II loaded with the high sensitivity CsI(Tl) detector, C12137-01. It was found that the sensitivity of KURAMA-II (C12137-01) was about 10 times or more for background measurement, compared with KURAMA-II loaded with the standard type CsI(Tl) detector, C12137. A background equation for the energy range of 1400-2000 keV was determined as, y (Sv/h)=0.062 x (cps). We evaluated background air dose rates using KURAMA-II (C12137-01) for 71 municipalities and compared them with the previous study using KURAMA-II (C12137). Evaluated background air dose rates in this study were almost equal to those in the previous study. We confirmed that the background equation evaluated in this study was applicable for the KURAMA-II (C12137-01).
Kato, Hiroaki*; Onda, Yuichi*; Gao, X.*; Sanada, Yukihisa; Saito, Kimiaki
Journal of Environmental Radioactivity, 210, p.105996_1 - 105996_12, 2019/12
Times Cited Count:56 Percentile:89.84(Environmental Sciences)Sanada, Yukihisa
Nihon Genshiryoku Gakkai-Shi ATOMO, 61(6), p.453 - 456, 2019/06
no abstracts in English
Takeishi, Minoru; Shibamichi, Masaru; Malins, A.; Kurikami, Hiroshi; Murakami, Mitsuhiro*; Saegusa, Jun; Yoneya, Masayuki
Journal of Environmental Radioactivity, 177, p.1 - 12, 2017/10
By convention radiation measurements from vehicle-borne surveys are converted to the dose rate at 1 m above the ground in the absence of the vehicle. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The dose rates obtained by combining measurements from two detectors were within 20% of the hand-held reference measurements. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields dose rates closer to the values adjacent to the road. We also investigated mounting heights for vehicle-borne detectors using Monte Carlo -ray simulations.
Sato, Rina; Yoshimura, Kazuya; Sanada, Yukihisa; Sato, Tetsuro*
no journal, ,
no abstracts in English
Sato, Rina; Yoshimura, Kazuya; Sanada, Yukihisa; Sato, Tetsuro*
no journal, ,