Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 64

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2021-009, 54 Pages, 2021/07

JAEA-Review-2021-009.pdf:5.02MB

The Horonobe URL Project is being pursued by the JAEA to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In 2021 fiscal year (2021/2022), JAEA continue to conduct research on "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism", which are the important issues shown in the Horonobe underground research plan after 2020 fiscal year. The main studies to be conducted in 2021 fiscal year are as follows. As "Demonstration of EBS in geological environment", we will shift to the test under the condition that the influence of heating is eliminated in the full scale EBS experiment. As "Demonstration of disposal concept", as a demonstration of the closure techniques, it details the conditions under which long-term transitions in the tunnel and surrounding bedrock have a significant impact on safety assessments. And we will continue engineering scale experiment to confirm the workability and performance of plugs and laboratory tests to examine the interaction between backfilling materials and buffer materials. As "Validation of buffer capacity of the sedimentary rock to tectonism", we will analyze the results of the hydraulic disturbance test and continue to study the hydraulic disconnection of faults/fissures in the Wakkanai Formation. As an advancement of technology for investigating and evaluating areas where the flow of groundwater is extremely slow, a boring exploration will be conducted to confirm the three-dimensional distribution of the fossil seawater area.

Journal Articles

The Impact of cement on argillaceous rocks in radioactive waste disposal systems; A Review focusing on key processes and remaining issues

Wilson, J.*; Bateman, K.; Tachi, Yukio

Applied Geochemistry, 130, p.104979_1 - 104979_19, 2021/07

 Times Cited Count:0 Percentile:0.65(Geochemistry & Geophysics)

The concept of deep geological disposal will include the multiple use of cement-based materials. In the case of argillaceous host rocks, the presence of hyperalkaline cement porefluid results in the destabilization of primary minerals in the argillite, resulting in the development of a zone of alteration at cement-rock interfaces. The process understanding gained from experimental, analogue, and modelling studies has been reviewed, and remaining areas of uncertainty identified. Although there is a reasonably good understanding of the mineral assemblages that are likely to occur due to cement-rock interactions, there are still some areas where a degree of uncertainty remains, in particular: the evolution of cement-argillite interfaces at T $$>$$ 25$$^{circ}$$C; the rates at which secondary minerals form; the extent of pore clogging due to secondary mineral precipitation; the implications of alteration for radionuclide transport.

JAEA Reports

A Numerical simulation study of the desaturation and oxygen infusion into the sedimentary rock around the tunnel in the Horonobe Underground Research Laboratory

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

JAEA-Data/Code 2021-002, 26 Pages, 2021/05

JAEA-Data-Code-2021-002.pdf:2.14MB
JAEA-Data-Code-2021-002-appendix(CD-ROM).zip:40.99MB

Investigations employing numerical simulation have been conducted to study the mechanisms of desaturation and oxygen infusion into sedimentary formations. By mimicking the conditions of the Horonobe underground research laboratory, numerical simulations aided geoscientific investigation of the effects of dissolved gas content and rock permeability on the desaturation (Miyakawa et al., 2019) and mechanisms of oxygen intrusion into the host rock (Miyakawa et al., 2021). These simulations calculated multi-phase flow, including flows of groundwater and exsolved gas, and conducted sensitivity analysis changing the dissolved gas content, rock permeability, and humidity at the gallery wall. Only the most important results from these simulations have been reported previously, because of publishers' space limitations. Hence, in order to provide basic data for understanding the mechanisms of desaturation and oxygen infusion into rock, all data for 27 output parameters (e.g., advective fluxes of heat, gas, and water, diffusive fluxes of water, CH$$_{4}$$, CO$$_{2}$$, O$$_{2}$$, and N$$_{2}$$, saturation degree, water pressure, and mass fraction of each component) over a modeling period of 100 years are presented here.

JAEA Reports

JAEA-TDB-RN in 2020; Update of JAEA's thermodynamic database for solubility and speciation of radionuclides for performance assessment of geological disposal of high-level and TRU wastes

Kitamura, Akira

JAEA-Data/Code 2020-020, 164 Pages, 2021/03

JAEA-Data-Code-2020-020.pdf:3.11MB
JAEA-Data-Code-2020-020-appendix(DVD-ROM).zip:0.56MB

Part of JAEA's Thermodynamic Database (JAEA-TDB) for solubility and speciation of radionuclides (JAEA-TDB-RN) for performance assessment of geological disposal of high-level radioactive and TRU wastes has been updated with subsuming the database for geochemical calculations (JAEA-TDB-GC). This report has focused to update JAEA-TDB-RN after selecting change in standard Gibbs free energy of formation ($$Delta_{rm f}$$$$G^{circ}_{rm m}$$), change in standard enthalpy change of formation ($$Delta$$$$H$$$$^{circ}$$$$_{rm m}$$), standard molar entropy ($$S^{circ}$$$$_{rm m}$$) and, heat capacity ($$C^{circ}_{rm p}$$), change in standard Gibbs free energy of reaction ($$Delta_{rm r}G^{circ}$$$$_{rm m}$$), change in standard enthalpy change of reaction ($$Delta$$$$_{rm r}$$$$H$$$$^{circ}$$$$_{rm m}$$) and standard entropy change of reaction ($$Delta_{rm r}S^{circ}_{rm m}$$) as well as logarithm of equilibrium constant (log$$_{10}$$$$K^{circ}$$) at standard state. The extent of selection of these thermodynamic data enables to evaluate solubility and speciation of radionuclides at temperatures other than 298.15 K. Furthermore, the latest thermodynamic data for iron which have been critically reviewed, selected and compiled by the Nuclear Energy Agency within Organisation for Economic Co-operation and Development (OECD/NEA) have been accepted. Most of previously selected log$$_{10}$$$$K^{circ}$$ have been refined to confirm internal consistency with JAEA-TDB-GC. Text files of the updated JAEA-TDB have been provided for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

Journal Articles

Development of evaluation method for diffusion and filtration behavior of colloid in compacted bentonites using dendrimers

Endo, Takashi*; Tachi, Yukio; Ishidera, Takamitsu; Terashima, Motoki

Nihon Genshiryoku Gakkai Wabun Rombunshi, 20(1), p.9 - 22, 2021/03

Evaluation method of colloid diffusion and filtration in compacted bentonites was developed using dendrimers. Diffusion and filtration behavior of PAMAM dendrimers with the size of 5.7$$sim$$7.2nm was investigated by the through-diffusion experiment in bentonite compacted to 0.8 Mg/m$$^{3}$$ and saturated with 0.005$$sim$$0.5mol/L NaCl. Effective diffusivities (De) and filtration ratios (Rf) of dendrimers were determined from the breakthrough curves and the depth profiles in compacted bentonite, respectively. The De values of negatively charged dendrimer increased when porewater salinity increased and dendrimer size decreased as influenced by anion exclusion effect in negatively charged clay surfaces. The Rf values increased when porewater salinity decreased and dendrimer size increased, demonstrating significant fractions of dendrimer were filtered by narrow pores in complex pore networks. These trends consistent with the previous studies emphasize the validity of the evaluation method using dendrimer.

Journal Articles

Prediction of thermodynamic data for radium suitable for thermodynamic database for radioactive waste management using an electrostatic model and correlation with ionic radii among alkaline earth metals

Kitamura, Akira; Yoshida, Yasushi*

Journal of Radioanalytical and Nuclear Chemistry, 327(2), p.839 - 845, 2021/02

 Times Cited Count:0 Percentile:0.02(Chemistry, Analytical)

Thermodynamic data for radium for radioactive waste management have been predicted using an electrostatic model and correlation with the ionic radii of the alkaline earth metals. Estimation of the standard Gibbs free energy of formation and standard molar entropy of aqueous radium species and compounds has been based on such approaches as extrapolation of the thermodynamic properties of strontium and barium, and use of a model of ion pair formation. The predicted thermodynamic data for radium have been compared with previously reported values.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2019 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-042, 116 Pages, 2021/01

JAEA-Review-2020-042.pdf:10.33MB

The Horonobe Underground Research Laboratory Project will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2019 fiscal year (2019/2020). The investigations, which are composed of "Geoscientific research" and "R and D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2019 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

Journal Articles

Numerical simulation of oxygen infusion into desaturation resulting from artificial openings in sedimentary formations

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.609 - 614, 2021/01

Desaturation is expected due to excavation of an underground repository, especially in the newly created fractures zone (EDZ). During the construction and operation of facilities, the air in the gallery infuses into the rock around the gallery though the excavation affected area and causes oxidation of host rock and groundwater, which increase nuclide mobilities. In the Horonobe underground research laboratory (HURL), which is excavated in the Neogene sedimentary formations, no pyrite dissolution or precipitation of calcium sulfates was found from the cores drilled in the rock around the gallery. The reason for no oxidation is estimated that the release of dissolved gases from groundwater due to pressure decrease flows against the air infusion. In this research, the mechanism of O$$_{2}$$ intrusion into the rock was investigated by numerical multiphase flow simulation considering advection and diffusion of groundwater and gases. In the simulation, only Darcy's and Henry's laws were considered, that is, chemical reaction related to oxidation was not handled. The effects of dissolved gas and rock permeability on O$$_{2}$$ infusion into the rock were almost identical. Decreasing humidity with relatively low permeability leads to extensive accumulation of O$$_{2}$$ into the EDZ even though with a relatively large amount of dissolved gas. In the HURL, the shotcrete attenuates O$$_{2}$$ concentration and keeps 100% humidity at the boundary of the gallery wall, which inhibits O$$_{2}$$ infusion. Without the shotcrete, humidity at the gallery wall decreases according to seasonal changes and ventilation, which promotes O$$_{2}$$ intrusion into the EDZ but the chemical reaction related to O$$_{2}$$ buffering such as pyrite oxidation consumes O$$_{2}$$.

Journal Articles

Methodology development and determination of solubility-limiting solid phases for a performance assessment of geological disposal of high-level radioactive and TRU wastes

Kitamura, Akira; Yoshida, Yasushi*; Goto, Takahiro*; Shibutani, Sanae*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.58 - 71, 2020/12

Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey should be performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2020 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-022, 34 Pages, 2020/11

JAEA-Review-2020-022.pdf:3.99MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the URL will be decided by the end of 2019 Fiscal Year. JAEA summarizes the research and development activities of the important issues carried out during the 3rd Mid- and Long-term Plan, and set out three important issues after 2020 fiscal year. After consultation with Hokkaido and Horonobe town, JAEA formulated the Horonobe underground research plan after 2020 fiscal year within the 3rd and 4th Mid- and Long-term Plan. This report summarizes the investigation program for the 2020 fiscal year (2020/2021).

JAEA Reports

Proceedings of Information and Opinion Exchange Conference on Geoscientific Study, 2019

Nishio, Kazuhisa*; Shimizu, Mayuko; Iyatomi, Yosuke; Hama, Katsuhiro

JAEA-Review 2020-013, 59 Pages, 2020/08

JAEA-Review-2020-013.pdf:19.64MB

The Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA) has been conducting geoscientific study in order to establish a scientific and technological basis for the geological disposal of HLW. Technical information of the result on the geoscientific study conducted at TGC is provided at the annual Information and Opinion Exchange Conference on Geoscientific Study of TGC for exchanging opinions among researchers and engineers from universities, research organizations and private companies. This document compiles the research presentations and posters of the conference in Mizunami on November 20, 2019.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

JAEA Reports

Development of JAEA sorption database (JAEA-SDB); Update of sorption/QA data in FY2019

Sugiura, Yuki; Suyama, Tadahiro*; Tachi, Yukio

JAEA-Data/Code 2019-022, 40 Pages, 2020/03

JAEA-Data-Code-2019-022.pdf:2.22MB

Sorption behavior of radionuclides (RNs) in buffer materials, rocks and cementitious materials is one of the key processes in a safe geological disposal. This report focuses on updating of JAEA sorption database (JAEA-SDB) as a basis of integrated approach for the performance assessment (PA)-related distribution coefficient (K$$_{rm d}$$) setting and development of mechanistic sorption models. K$$_{rm d}$$ data and their quality assurance (QA) results were updated by focusing on the following systems as potential needs extracted from our recent activities on the K$$_{rm d}$$ setting and development of mechanistic models, i.e., clay minerals, sedimentary rocks and cementitious materials. As a result, 6,702 K$$_{rm d}$$ data from 60 references were added and the total number of K$$_{rm d}$$ values in JAEA-SDB reached 69,679. The QA/classified K$$_{rm d}$$ data reached about 72% for all K$$_{rm d}$$ data in JAEA-SDB.

JAEA Reports

Data acquisition for radionuclide sorption on barrier materials for performance assessment of geological disposal of TRU wastes

Tachi, Yukio; Suyama, Tadahiro*; Mihara, Morihiro

JAEA-Data/Code 2019-021, 101 Pages, 2020/03

JAEA-Data-Code-2019-021.pdf:4.05MB

Sorption of radionuclides in cement and bentonite as engineered barrier materials, and rocks as natural barrier is the one of key processes in the performance assessment of geological disposal of TRU and high-level waste. The magnitude of sorption, expressed normally by a distribution coefficient (K$$_{rm d}$$), needs to be measured and determined taking into account the properties of barrier materials and geochemical conditions and associated uncertainty in the performance assessment. The basic concept for TRU waste disposal contains cementitious materials as an engineered barrier materials, in addition to bentonite and rock. It is therefore needed to consider the effects of the cement degradation and co-existing substances such as nitrates on radionuclide sorption. This report focused on data acquisition of distribution coefficient (K$$_{rm d}$$) by batch sorption experiments for the systems coupling barrier material-chemical condition-radionuclides that are needed to consider for the performance assessment of geological disposal of TRU waste. The barrier materials considered are ordinary Portland cement (OPC), degraded OPC and tuff rock. The chemical conditions are distilled water and synthetic seawater equilibrated with OPC and those containing nitrates and ammonium salts, etc. The radionuclides considered are organic carbon, inorganic carbon, Cl, I, Cs, Ni, Se, Sr, Sn, Nb, Am and Th. Although K$$_{rm d}$$ values have been partly reported previously as RAMDA (Radionuclide Migration Datasets) for the performance assessment in the TRU-2 report, these results and addition K$$_{rm d}$$ data are reported with the details of experimental methods and conditions.

JAEA Reports

Preliminary study on radiation effects of monitoring equipment

Nakayama, Masashi; Tanai, Kenji

JAEA-Review 2019-032, 32 Pages, 2020/02

JAEA-Review-2019-032.pdf:1.84MB

There are various types of monitoring in the geological disposal of high-level radioactive waste, such as monitoring for confirmation of construction quality and the status of engineered barrier, and monitoring to help manage construction, operation and closure activities, etc. Among these monitoring methods, monitoring related to the confirmation of the state of engineered barrier has been studied in international joint research on monitoring concepts and specific methods. Since monitoring equipment is affected by temperature, humidity, pressure, radiation, water quality, etc., it is important to consider geological environmental conditions and radiation effects. This report compares the radiation resistance of the materials used in the monitoring equipment with the absorbed dose in the buffer material obtained by analysis, and qualitatively examines the effects of radiation on the monitoring equipment. As a result of the examination, it was estimated that the dose did not affect the monitoring equipment. However, it is necessary to verify the possibility of reliable data acquisition by irradiation tests for monitoring devices with built-in electronic components.

Journal Articles

Development of thermodynamic database for performance assessment of geological disposal of high-level radioactive waste and TRU waste

Kitamura, Akira

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(1), p.23 - 28, 2020/01

Thermodynamic databases (TDBs) for performance assessment of geological disposal of high-level waste and TRU waste have been developed to predict solubility and speciation of radionuclides in groundwater in some countries including Japan. The present manuscript briefly describes current status of development of the TDB organized by the Nuclear Energy Agency within the Organisation of Economic Co-operation and Development (OECD/NEA) and the TDBs in some countries including Japan.

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Installation of engineered barrier system and backfilling the test niche at the 350m gallery

Nakayama, Masashi; Ono, Hirokazu

JAEA-Research 2019-007, 132 Pages, 2019/12

JAEA-Research-2019-007.pdf:11.29MB
JAEA-Research-2019-007-appendix(CD-ROM).zip:39.18MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies". The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at GL-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the EBS experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report shows following works had carried out at the GL-350 m gallery. Excavation of a test niche and a test pit, Setting buffer material blocks and a simulated overpack into the test pit, Backfilling the niche by compaction backfilling material and setting backfilling material blocks, Casting concrete type plug and contact grouting, Consolidate measurement system and start measuring.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2019 fiscal year

Aoyagi, Kazuhei

JAEA-Review 2019-008, 20 Pages, 2019/07

JAEA-Review-2019-008.pdf:3.33MB

As part of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are the top priority issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The Horonobe URL Project is planned to extend over a period of about 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the investigation program for the 2019 fiscal year (2019/2020). In the 2019 fiscal year, investigations in "geoscientific research", including "development of techniques for investigating the geological environment", "development of engineering techniques for use in the deep underground environment" and "studies on the long-term stability of the geological environment", are continuously carried out. Investigations in "research and development on geological disposal technology", including "improving the reliability of disposal technologies" and "enhancement of safety assessment methodologies", are also continuously carried out.

Journal Articles

A Systematic radionuclide migration parameter setting approach for potential siting environments in Japan

Hamamoto, Takafumi*; Ishida, Keisuke*; Shibutani, Sanae*; Fujisaki, Kiyoshi*; Tachi, Yukio; Ishiguro, Katsuhiko*; McKinley, I. G.*

Proceedings of 2019 International High-Level Radioactive Waste Management Conference (IHLRWM 2019) (USB Flash Drive), p.77 - 82, 2019/04

JAEA Reports

Update of JAEA-TDB; Update of thermodynamic data for zirconium and those for isosaccahrinate, tentative selection of thermodynamic data for ternary M$$^{2+}$$-UO$$_{2}$$$$^{2+}$$-CO$$_{3}$$$$^{2-}$$ system and integration with JAEA's thermodynamic database for geochemical calculations

Kitamura, Akira

JAEA-Data/Code 2018-018, 103 Pages, 2019/03

JAEA-Data-Code-2018-018.pdf:5.66MB
JAEA-Data-Code-2018-018-appendix1(DVD-ROM).zip:0.14MB
JAEA-Data-Code-2018-018-appendix2(DVD-ROM).zip:0.15MB
JAEA-Data-Code-2018-018-appendix3(DVD-ROM).zip:0.19MB

The latest available thermodynamic data were critically reviewed and the selected values were included into the JAEA-TDB for performance assessment of geological disposal of high-level radioactive and TRU wastes. This critical review specifically addressed thermodynamic data for (1) a zirconium-hydroxide system through comparison of thermodynamic data selected by the Nuclear Energy Agency within the Organisation for Economic Co-operation and Development (OECD/NEA), (2) complexation of metal ions with isosaccharinic acid based on the latest review papers. Furthermore, the author performed (3) tentative selection of thermodynamic data on ternary complexes among alkaline-earth metal, uranyl and carbonate ions, and (4) integration with the latest version of JAEA's thermodynamic database for geochemical calculations. The internal consistency of the selected data was checked by the author. Text files of the updated and integrated thermodynamic database have been prepared for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

64 (Records 1-20 displayed on this page)