Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ito, Kengo*; Morita, Misaki*; Araki, Yuta*; Kato, Chizu*; Fukutani, Satoshi*; Matsumura, Tatsuro; Fujii, Toshiyuki*
Solvent Extraction Research and Development, Japan, 32(1), p.53 - 62, 2025/00
Rhodium (Rh) and Palladium (Pd) in high-level radioactive waste are primarily fission products. This Study focused on understanding the extraction behavior of these platinum group elements (PGEs) using the novel extractants -hexaoctylnitriloacetamide (HONTA) and alkyl diamideamine (ADAAM). Both extractants showed affinity for Pd, with distribution coefficients significantly exceeding 1, demonstrating their effectiveness in Pd separation. In contrast, the distribution coefficients for Rh were consistently below 10
, indicating low extraction efficiency from nitric acid. However, by leveraging the salting-out effect with calcium nitrate hydrate, a distribution coefficient of
570 for Rh was achieved using HONTA. To overcome the difficult back-extraction of PGEs with HONTA, experiments were conducted using HEDTA and thiourea. Back-extraction with HEDTA in high-concentration nitric acid (
2M) resulted in
90% extraction of Pd, while thiourea-based back-extraction with nitric acid yielded over 40% extraction for Rh, with the maximum of 62.7% achieved using hydrochloric acid.
Ban, Yasutoshi; Suzuki, Hideya*; Hotoku, Shinobu; Tsubata, Yasuhiro
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
A continuous counter-current extraction experiment was performed by mixer-settler extractors to recover minor actinides (MA; Am and Cm) from high-level liquid waste. Using hexaoctyl nitrilotriacetamide (HONTA) as an extractant, 0.17 g of MA was recovered in a MA fraction.
Miyagawa, Akihisa*; Hayashi, Naoki*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Miyazaki, Yasunori; Hasegawa, Kenta; Sano, Yuichi; Nakatani, Kiyoharu*
Bulletin of the Chemical Society of Japan, 96(9), p.1019 - 1025, 2023/09
Times Cited Count:4 Percentile:34.10(Chemistry, Multidisciplinary)In the present study, we have elucidated the mass transfer mechanism of Eu(III) and Sm(III) in the solution with these ions in single nitrilotriacetamide (NTA) extractant-impregnated polymer-coated silica particle. The rate-limiting process of mass transfer was the reaction process of ions with NTA molecules, in which the NO ions were not involved, which was consistent with that obtained in single ion distribution system.
Suzuki, Hideya*; Ban, Yasutoshi
Analytical Sciences, 39(8), p.1341 - 1348, 2023/08
Times Cited Count:4 Percentile:49.52(Chemistry, Analytical)The Japan Atomic Energy Agency (JAEA) has proposed the Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation (SELECT) process by solvent extraction as a new separation technology to recover minor actinides (MA) from high-level liquid waste (HLLW) produced by spent fuel reprocessing. The MA separation in the SELECT process comprises the batch recovery of MA and rare earths (RE) from HLLW, MA/RE separation, and Am/Cm separation. Three highly practical extractants are used in the MA separation. Furthermore, this flow configuration facilitates the preparation of nitric acid concentrations in the aqueous phase. However, the separation factor between Cm and Nd in the MA/RE separation is small ( = 2.5), requiring many extraction stages for continuous extraction in a mixer-settler. Therefore, this study investigated the separation of only Am from an aqueous nitric acid solution containing MA (Am and Cm) and RE using an organic phase mixed with two extractants alkyl diamideamine with 2-ethylhexyl alkyl chains (ADAAM(EH)) and hexa-n-octylnitrilotriacetamide (HONTA) used in the SELECT process. Under high-concentration nitric acid conditions, Am and La, Ce, Pr, Nd (light lanthanides) were extracted in the ADAAM(EH) + HONTA mixed solvent, whereas Cm, medium, and heavy lanthanides, and Y were partitioned in the aqueous phase. Subsequently, only light lanthanides could be back extracted from the ADAAM(EH) + HONTA mixture solvent containing Am and light lanthanides in low nitric acid concentrations. Furthermore, Am could be easily stripped with 0.2 M or 5 M nitric acid. This method does not require the mutual separation of Cm and Nd, which have low separation factors. Am can be efficiently separated by one extraction and two back-extractions, reducing the number of steps in the SELECT process.
Miyagawa, Akihisa*; Hayashi, Naoki*; Kuzure, Yoshiaki*; Takahashi, Takumi*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Miyazaki, Yasunori; Hasegawa, Kenta; Sano, Yuichi; et al.
Bulletin of the Chemical Society of Japan, 96(7), p.671 - 676, 2023/07
Times Cited Count:7 Percentile:58.25(Chemistry, Multidisciplinary)We investigated the distribution mechanism of Eu(III) in a single polymer-coated silica particle including nitrilotriacetamide (NTA) extractants known as HONTA and TOD2EHNTA. The present study provides a valuable approach for the evaluation and enhancement of the functionality of "single extractant-impregnated polymer-coated silica particle".
Akuzawa, Tadashi*; Kim, S.-Y.*; Kubota, Masahiko*; Wu, H.*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5851 - 5858, 2022/12
Times Cited Count:5 Percentile:61.74(Chemistry, Analytical)Sano, Yuichi; Sakamoto, Atsushi; Miyazaki, Yasunori; Watanabe, So; Morita, Keisuke; Emori, Tatsuya; Ban, Yasutoshi; Arai, Tsuyoshi*; Nakatani, Kiyoharu*; Matsuura, Haruaki*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07
We developed a hybrid MA(III) recovery process combining MA(III)+Ln(III) co-recovery flowsheet by solvent extraction with TBP and MA(III)/Ln(III) separation flowsheet by simulated moving bed chromatography using HONTA impregnated adsorbents with large particle size porous silica support.
Toigawa, Tomohiro; Kumagai, Yuta; Yamashita, Shinichi*; Ban, Yasutoshi; Matsumura, Tatsuro
UTNL-R-0502 (Internet), 2 Pages, 2022/04
This report summarizes the results obtained in FY2020 at the Electron Linac Facility of the University of Tokyo. The radiolysis process of -hexaoctyl nitrilotriacetamide (HONTA), which is expected to be used as an extractant in a separation process for minor actinides, diluted in dodecane was investigated by pulse radiolysis experiments. The radical cation and the triplet-excited state of HONTA were observed in the nanosecond time region. The transition from the radical cation to the triplet excited state was slowed down by adding electron scavengers, and further, the reactivity of the triplet excited state was also suppressed.
Sakamoto, Atsushi; Kibe, Satoshi*; Kawanobe, Kazunori*; Fujisaku, Kazuhiko*; Sano, Yuichi; Takeuchi, Masayuki; Suzuki, Hideya*; Tsubata, Yasuhiro; Ban, Yasutoshi; Matsumura, Tatsuro
JAEA-Research 2021-003, 30 Pages, 2021/06
Japan Atomic Energy Agency has been developing a solvent extraction process called SELECT to recover minor actinides (MA) from spent nuclear fuel. In the SELECT process, TDdDGA, HONTA, and ADAAM are used as the extractants for MA + Ln corecovery, MA/Ln separation and Am/Cm separation, respectively. These extractants do not contain phosphorus (P), and consist of carbon (C), hydrogen (H), oxygen (O), and nitrogen (N). In this study, in order to give beneficial information for designing flowsheet, the mass transfer coefficients of Ln between HNO solution and TDdDGA or HONTA / n-dodecane solvent were evaluated by the single drop technique. Prior to the evaluation of mass transfer coefficient, we had optimized the structure of the single drop apparatus to improve accuracy of the measurement. Based on the mass transfer coefficients obtained in HNO
/ TDdDGA-n-dodecane system, Ln behaviors in the counter-current extraction and back-extraction using mixer-settlers and centrifugal contactors were estimated by simple calculation, and they had a good agreement with our previous experimental results. We also confirmed the mass transfer coefficients of Ln in HNO
/ HONTA - n-dodecane system are under 10
m/s.
Toigawa, Tomohiro; Peterman, D. R.*; Meeker, D. S.*; Grimes, T. S.*; Zalupski, P. R.*; Mezyk, S. P.*; Cook, A. R.*; Yamashita, Shinichi*; Kumagai, Yuta; Matsumura, Tatsuro; et al.
Physical Chemistry Chemical Physics, 23(2), p.1343 - 1351, 2021/01
Times Cited Count:21 Percentile:83.90(Chemistry, Physical)The candidate An(III)/Ln(III) separation ligand hexa--octylnitrilo-triacetamide (HONTA) was irradiated under envisioned SELECT (Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation) process conditions using a solvent test loop in conjunction with cobalt-60 gamma irradiation. We demonstrate that HONTA undergoes exponential decay with increasing gamma dose to produce a range of degradation products which have been identified and quantified by HPLC-ESI-MS/MS techniques. The combination of HONTA destruction and degradation product ingrowth, particularly dioctylamine, negatively impacts the extraction and back-extraction of both americium and europium ions. The loss of HONTA was attributed to its reaction with the solvent (
-dodecane) radical cation of
(HONTA + R
) = (7.61
0.82)
10
M
s
obtained by pulse radiolysis techniques. However, when this ligand is bound to either americium or europium ions, the observed
-dodecane radical cation kinetics increase by over an order of magnitude. This large reactivity increase to additional reaction pathways occurring upon metal-ion binding. Lastly nanosecond time-resolved measurements showed that both direct and indirect HONTA radiolysis yielded the short-lived (
100 ns) HONTA radical cation as well as a longer-lived (
s) HONTA triplet excited state. These HONTA species are important precursors to the suite of HONTA degradation products observed.
Ban, Yasutoshi; Suzuki, Hideya*; Hotoku, Shinobu; Tsutsui, Nao; Tsubata, Yasuhiro; Matsumura, Tatsuro
Solvent Extraction and Ion Exchange, 37(7), p.489 - 499, 2019/11
Times Cited Count:24 Percentile:64.32(Chemistry, Multidisciplinary)A continuous counter-current experiment to separate minor actinides (MAs: Am and Cm) was performed with -hexaochyl nitrilotriacetamide (HONTA) as an extractant. Nitric acid of 0.08 M (mol/dm
) containing MAs and rare earths (REs) recovered from high-level waste was used as the Feed, and the experiment was conducted for 14 h. The ratios of Am and Cm recovered into the MA fraction measured 94.9% and 78.9%, respectively. HONTA hardly extracted Y, La, and Eu in the Feed (99.9% for Y, 99.9% for La, and 96.7% for Eu), most of which were distributed to the RE fraction. A portion of Nd was extracted by HONTA, and consequently the ratio of Nd in the RE fraction was 83.5%. The concentrations of MAs and some REs in each stage were calculated using a simulation code, and the results are consistent with the experimental values. This code indicates that the ratios of MAs in the MA fraction and REs in the RE fraction could be
99% by optimizing separation conditions.
Watanabe, So; Suzuki, Hideya; Goto, Ichiro*; Kofuji, Hirohide; Matsumura, Tatsuro
Nihon Ion Kokan Gakkai-Shi, 29(3), p.71 - 75, 2018/09
Suzuki, Hideya; Tsubata, Yasuhiro; Matsumura, Tatsuro
no journal, ,
The Japan Atomic Energy Agency has been studying partitioning and transmutation systems. In this partitioning process, new extractants with highly practical and high extraction ability for minor actinoids was developed. New extractants, called NTAamide, were tested for mutual separation of trivalent minor actinoids and trivalent rare earth elements. Among the four NTAamides, hexaoctylnitrilotriacetamide (HONTA) provided the largest distribution ratio of trivalent americium, and was chosen. A continuous liquid-liquid extraction test was conducted using a multistage countercurrent mixer-settler extractor with HONTA. In this test, separation of MA(III) and RE(III) was achieved with very high yield.
Matsumura, Tatsuro; Ban, Yasutoshi; Suzuki, Hideya; Tsubata, Yasuhiro; Hotoku, Shinobu; Tsutsui, Nao; Toigawa, Tomohiro
no journal, ,
To minimize the radioactive waste from nuclear fuel cycle, we have conducted research and development of the new reprocessing and MA separation process, SELECT process (Solvent Extraction from Liquid-waste using Extractants of CHON-type for Transmutation), using innovative extractants. The extractants for each solvent extraction processes were developed in JAEA. The extractants for reprocessing process are monoamides as alternative extractants for TBP. For MA+RE recovery process, we developed TDdDGA which has very high performance to recover of MA from high level waste. HONTA and ADAAM were developed for MA/RE separation process and Am/Cm separation process respectively. All of the extractants consist of C, H, O, and N elements, and can be decomposed to gases by incineration. The demonstration tests using genuine spent fuel and high level liquid waste of the SELECT process have been conducted. Uranium solution and U+Pu mixed solution were separated from spent fuel, and MA, americium and curium, were recovered and separated from HLW effectively. The details of the extraction tests for each separation processes will be presented in correspond presentations in this conference.
Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki; Suzuki, Hideya*; Matsumura, Tatsuro; Kawanobe, Kazunori*; Asano, Shusaku*; Maki, Taisuke*; Mae, Kazuhiro*
no journal, ,
The mass transfer coefficients during the extraction and back-extraction of lanthanide elements in the solvent extraction process using new extractants (TDdDGA, HONTA) developed for minor actinides (MA) recovery were evaluated. In the TDdDGA system, it was confirmed that the mass transfer coefficients during back extraction were improved by the addition of alcohol to the solvent, etc., and in the HONTA system, the mass transfer coefficients were relatively small.
Suzuki, Hideya*; Ban, Yasutoshi; Tsubata, Yasuhiro; Tsutsui, Nao; Toigawa, Tomohiro; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; Kawasaki, Tomohiro*; Matsumura, Tatsuro
no journal, ,
The Japan Atomic Energy Agency (JAEA) has been studying partitioning technology. Recently, JAEA proposed a new liquid-liquid extraction technology called SELECT process to separate minor actinide (MA) from high-level liquid waste for transmutation. In this process, new extractants (HONTA, ADAAM) with highly practical and high extraction ability for MA was developed. A mixed solvent of HONTA and ADAAM was tested for mutual separation of MA and rare earth elements (RE). In this test, separation of MA and RE was achieved with very high yield. Furthermore, Americium (Am) and Curium (Cm) were separated efficiently with high separation factor values.
Watanabe, So; Okada, Makoto*; Matsuura, Haruaki*; Kada, Wataru*; Koka, Masashi*; Yamagata, Ryohei*; Yamada, Naoto*; Sato, Takahiro*; Ishii, Yasuyuki*
no journal, ,
no abstracts in English
Suzuki, Hideya*; Ban, Yasutoshi; Tsubata, Yasuhiro; Hotoku, Shinobu; Morita, Keisuke; Toigawa, Tomohiro; Tsutsui, Nao; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; Kawasaki, Tomohiro*; et al.
no journal, ,
The Japan Atomic Energy Agency has been studying partitioning and transmutation (P&T) systems. In the P&T, the separation of minor actinide (MA) from the chemically similar lanthanides is the key step. After MAs are separated from high-level liquid waste (HLLW), the mutual separation of Am and Cm (Am/Cm separation) can be conducted. Therefore, the removal of the pyrogenic Cm nuclide would reduce the difficulties associated with MA-fuel fabrication. However, Am/Cm separation is very challenging because the two elements have similar chemical and physical properties. Highly practical new reagents, called HONTA and ADAAM have been developed. Solvent extraction tests were performed using a mixture of HONTA and ADAAM. As a result, the separation of Am from the simulated HLLW was achieved with high yield.
Kida, Fukuka*; Arai, Tsuyoshi*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki
no journal, ,
Focusing on the extraction chromatography method using DGA-based and NTA-based extractants for MA recovery process that can be applied to MOX fuel reprocessing, we developed an adsorbent and investigated the separation conditions by column tests.
Sato, Hiromori*; Yoshida, Masaaki*; Nemoto, Shuhei*; Nagase, Midori*; Arai, Tsuyoshi*; Watanabe, So; Sano, Yuichi
no journal, ,
We focused on the extraction chromatography technique using HONTA impregnated adsorbent for MA (III)/Ln (III) separation from high-level radioactive liquid waste. In this study, we had the column test for evaluating the adsorption performance with the improved carrier.