Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
Journal of Nuclear Science and Technology, 43(1), p.55 - 64, 2006/01
Times Cited Count:10 Percentile:56.00(Nuclear Science & Technology)Effects of non-condensable gas from the accumulator tanks on secondary depressurization, as one of accident management (AM) measures in case of high pressure injection system failure, are studied at the ROSA-V/LSTF experiments simulating a ten instrument-tube break LOCA at the PWR vessel bottom. In an experiment with no gas inflow, the secondary depressurization at -55 K/h initiated by SI signal with 10 minutes delay succeeded in the LPI actuation. On the other hand, the gas inflow in another experiment degraded the primary depressurization and resulted in core uncovery before the LPI start. The third experiment with rapid secondary depressurization and continuous auxiliary feedwater supply, however, showed a possibility of long-term core cooling by the LPI actuation. RELAP5/MOD3 code analyses well predicted these experiment results and clarified that condensation heat transfer was largely degraded by the gas in the U-tubes. In addition, a primary pressure - coolant mass map was found to be useful for indication of key plant parameters of AM measures.
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
JAERI-Research 2005-014, 170 Pages, 2005/06
A small break LOCA (SBLOCA) experiment was conducted at the LSTF of ROSA-V program to study effects of accident management (AM) on core cooling, which is important in case of high pressure injection (HPI) system failure during an SBLOCA at a PWR. The experiment, SB-PV-03, simulated ten instrument-tube break LOCA at the PWR vessel bottom equivalent to 0.2% cold leg break, total HPI failure, non-condensable gas inflow from accumulator injection system (AIS) and AM actions on secondary depressurization at -55 K/h and auxiliary feedwater (AFW) supply for 30 minutes. It was clarified that the AM actions were effective on primary depressurization until AIS injection end at 1.6 MPa, but thereafter became less effective by the gas inflow, resulting in low pressure injection (LPI) delay and whole core heatup under continuous water discharge at the break. The report describes these phenomena including core heatup related with primary coolant mass and AM actions, primary-to-secondary heat transfer analysis and estimation of gas in the primary loops.
JAERI Working Group for Examination of the Ruptured Pipe at Hamaoka-1
JAERI-Tech 2001-094, 60 Pages, 2001/12
no abstracts in English
Kumamaru, Hiroshige; ; M.Wang*; Kukita, Yutaka
Validation of Systems Transients Analysis Codes (FED-Vol. 223), 0, p.129 - 136, 1995/00
no abstracts in English
Kumamaru, Hiroshige; Kukita, Yutaka
Journal of Nuclear Science and Technology, 29(12), p.1162 - 1172, 1992/12
no abstracts in English
Kumamaru, Hiroshige; Kukita, Yutaka
Proc. of the 1st JSME/ASME Joint Int. Conf. on Nuclear Engineering, p.203 - 208, 1991/00
no abstracts in English