Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 84

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Hydrogen release reaction from sodium hydride with different sample quantities

Doi, Daisuke

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08

JAEA Reports

Neutronic analysis of beam window and LBE of an Accelerator-Driven System

Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-018, 41 Pages, 2022/03

JAEA-Research-2021-018.pdf:2.93MB

Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm$$^3$$. In the analysis of LBE, $$^{206}$$Bi and $$^{210}$$Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm$$^3$$.

Journal Articles

Advancement of elemental analytical model in LEAP-III code for tube failure propagation

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Li, J.*; Jang, S.*

Mechanical Engineering Journal (Internet), 7(3), p.19-00548_1 - 19-00548_11, 2020/06

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.

Journal Articles

Development of numerical analysis method for tube failure propagation under sodium-water reaction accident

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

Journal Articles

Advancement of numerical analysis method for tube failure propagation

Uchibori, Akihiro; Takata, Takashi; Yanagisawa, Hideki*; Li, J.*; Jang, S.*

Proceedings of 2018 ANS Winter Meeting and Nuclear Technology Expo; Embedded Topical International Topical Meeting on Advances in Thermal Hydraulics (ATH 2018) (USB Flash Drive), p.1289 - 1294, 2018/11

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.

Journal Articles

Numerical analysis of EBR-II shutdown heat removal test-17 using 1D plant dynamic analysis code coupled with 3D CFD code

Doda, Norihiro; Hiyama, Tomoyuki; Tanaka, Masaaki; Ohshima, Hiroyuki; Thomas, J.*; Vilim, R. B.*

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 10 Pages, 2017/06

In sodium-cooled fast reactors, a natural circulation is expected to remove the core decay heat when the plant gets into a station blackout. From a perspective of reactor safety, the core hot spot temperature arising in the natural circulation should be evaluated accurately. To this end, Japan Atomic Energy Agency is trying to couple a 1-D plant dynamics analysis code Super-COPD and a 3-D CFD code AQUA to solve the thermal-hydraulic field in the whole plant under natural circulation condition. As a validation study, the coupled code was applied to an analysis of EBR-II shutdown heat removal test. The obtained numerical results reasonably agreed with the measured data, which demonstrated the validity of the coupled code.

JAEA Reports

Thermal design study of lead-bismuth cooled accelerator driven system, 1; Study on thermal hydraulic behavior under normal operation condition

Akimoto, Hajime; Sugawara, Takanori

JAEA-Data/Code 2016-008, 87 Pages, 2016/09

JAEA-Data-Code-2016-008.pdf:15.62MB

Thermal hydraulic behavior in a lead-bismuth cooled accelerator driven system (ADS) is analyzed under normal operation condition. Input data for the ADS version of J-TRAC code have been constructed to integrate the conceptual design. The core part of the ADS is modeled in detail to evaluate the core radial power profile effect on the core cooling. As the result of the analyses, the followings are found; (1) Both maximum clad temperature and fuel temperature are below the design limits. (2) The radial power profile has little effect on the coolant flow distribution among fuel assemblies. (3) The radial power profile has little effect on the heat transfer coefficients along fuel rods. (4) The thermal hydraulic behaviors along four steam generators are identical. The thermal hydraulic behaviors along two pumps are also identical. A fast running input data is developed by the simplification of the detailed input data based on the findings mentioned above.

Journal Articles

Heat conduction analyses on rewetting front propagation during transients beyond anticipated operational occurrences for BWRs

Yonomoto, Taisuke; Shibamoto, Yasuteru; Satou, Akira; Okagaki, Yuria

Journal of Nuclear Science and Technology, 53(9), p.1342 - 1352, 2016/09

AA2015-0497.pdf:1.05MB

 Times Cited Count:3 Percentile:28.7(Nuclear Science & Technology)

Our previous study investigated the rewetting behavior of dryout fuel surface during transients beyond anticipated operational occurrences (AOOs) for BWRs, which indicated the rewetting velocity was significantly affected by the precursory cooling defined as cooling immediately before rewetting. The present study further investigated the previous experiments by conducting additional experimental and numerical heat conduction analyses to characterize the precursory cooling. For the characterization, the precursory cooling was firstly defined quantitatively based on evaluated heat transfer rates; the rewetting velocity was investigated as a function of the cladding temperature immediately before the onset of the precursory cooling. The results indicated that the propagation velocity appeared to be limited by the maximum heat transfer rate near the rewetting front. This limitation was consistent with results of the heat conduction analysis.

Journal Articles

Analysis of natural circulation tests in the experimental fast reactor JOYO

Nabeshima, Kunihiko; Doda, Norihiro; Ohshima, Hiroyuki; Mori, Takero; Ohira, Hiroaki; Iwasaki, Takashi*

Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (USB Flash Drive), p.1041 - 1049, 2015/08

Natural circulation is one of the most important mechanisms to remove decay heat in the sodium cooled fast reactors from the viewpoint of passive safety. On the other hand, it is difficult to evaluate plant dynamics accurately under low flow natural circulation condition. In this study, Super-COPD has been validated through the application to the analysis of natural circulation tests in the experimental fast reactor JOYO. Almost all plant components in JOYO including four air-coolers were modeled in Super COPD. Furthermore, the full scale modeling of fuel subassembly was also adopted in this analysis. The natural circulation test after reactor scram from 100 MW full power at JOYO was selected and simulated by Super-COPD. The transient behaviors predicted by Super-COPD showed good agreement with the experimental data.

JAEA Reports

Development of thermal-hydraulic design code for transmutation system with lead-bismuth cooled accelerator driven reactor

Akimoto, Hajime

JAEA-Data/Code 2014-031, 75 Pages, 2015/03

JAEA-Data-Code-2014-031.pdf:37.23MB

A thermal-hydraulic analysis code for transmutation system with lead-bismuth cooled accelerator-driven system (ADS) has been developed using the Japanese-version of Transient Reactor Analysis Code (J-TRAC) as the framework to apply the design studies of ADS. To identify the required capabilities of the thermal-hydraulic analysis code for ADS, previous thermal-hydraulic analyses of light water reactors, sodium-cooled fast reactor and ADS have been surveyed. To make up for insufficient capabilities of the J-TRAC code as a thermal-hydraulic analysis code of ADS, physical properties of lead-bismuth eutectic (LBE), argon gas and nitride nuclear fuel were implemented to the J-TRAC code. It was confirmed that the implemented capabilities worked as expected through verification calculations on (1) single-phase LBE flow, (2) heat transfer in a fuel assembly, and (3) heat transfer in a steam generator.

Journal Articles

CFD analysis

Takase, Kazuyuki; Misawa, Takeharu*

Supercritical-Pressure Light Water Cooled Reactors, p.301 - 319, 2014/12

no abstracts in English

Journal Articles

Nuclear analyses of some key aspects of the ITER design with Monte Carlo codes

Iida, Hiromasa; Petrizzi, L.*; Khripunov, V.*; Federici, G.*; Polunovskiy, E.*

Fusion Engineering and Design, 75(1-4), p.133 - 139, 2005/11

The design of the ITER machine was presented in 2001. A nuclear analysis has been performed on ITER by means of the most detailed models and the best assessed nuclear data and codes. As the construction phase of ITER is approaching, the design of the main components has been optimized/finalized and several minor design changes/optimizations have been made, which required refined calculations to confirm that nuclear design requirements are met. Some of the proposed design changes have been made to mitigate critical radiation shielding problems. This paper reviews some of the most recent neutronic work with emphasis on critical nuclear responses in the TF coil inboard legs and vacuum vessel related to design modifications made to the blanket modules and vacuum vessel.

Journal Articles

Natural convection heat transfer of high temperature gas in an annulus between two vertical concentric cylinders

Inaba, Yoshitomo; Zhang, Y.*; Takeda, Tetsuaki; Shiina, Yasuaki

Heat Transfer-Asian Research, 34(5), p.293 - 308, 2005/07

Water cooling panels have been adopted as the vessel cooling system of the HTTR to cool the reactor core indirectly by natural convection and thermal radiation. In order to investigate the heat transfer characteristics of high temperature gas in a vertical annular space between the reactor pressure vessel and cooling panels of the HTTR, we carried out experiments and numerical analyses on natural convection heat transfer coupled with thermal radiation heat transfer in an annulus between two vertical concentric cylinders with the inner cylinder heated and the outer cylinder cooled. In the present experiments, Rayleigh number based on the height of the annulus ranged from 2.0$$times$$10$$^{7}$$ to 5.4$$times$$10$$^{7}$$ for helium gas and from 1.2$$times$$10$$^{9}$$ to 3.5$$times$$10$$^{9}$$ for nitrogen gas. The numerical results were in good agreement with the experimental ones regarding the surface temperatures of the heating and cooling walls. As a result of the experiments and the numerical analyses, the heat transfer coefficient of natural convection coupled with thermal radiation was obtained.

JAEA Reports

Experimental study on secondary depressurization action for PWR vessel bottom small break LOCA with HPI failure and gas inflow (ROSA-V/LSTF test SB-PV-03)

Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

JAERI-Research 2005-014, 170 Pages, 2005/06

JAERI-Research-2005-014.pdf:7.64MB

A small break LOCA (SBLOCA) experiment was conducted at the LSTF of ROSA-V program to study effects of accident management (AM) on core cooling, which is important in case of high pressure injection (HPI) system failure during an SBLOCA at a PWR. The experiment, SB-PV-03, simulated ten instrument-tube break LOCA at the PWR vessel bottom equivalent to 0.2% cold leg break, total HPI failure, non-condensable gas inflow from accumulator injection system (AIS) and AM actions on secondary depressurization at -55 K/h and auxiliary feedwater (AFW) supply for 30 minutes. It was clarified that the AM actions were effective on primary depressurization until AIS injection end at 1.6 MPa, but thereafter became less effective by the gas inflow, resulting in low pressure injection (LPI) delay and whole core heatup under continuous water discharge at the break. The report describes these phenomena including core heatup related with primary coolant mass and AM actions, primary-to-secondary heat transfer analysis and estimation of gas in the primary loops.

JAEA Reports

Verification of HTTR hydrogen production system analysis code using experimental data of mock-up model test facility with a full-scale reaction tube; Cooling system of the secondary helium gas using steam generator and radiator (Contract research)

Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Maeda, Yukimasa; Takeda, Tetsuaki; Nishihara, Tetsuo; Inagaki, Yoshiyuki

JAERI-Tech 2005-014, 89 Pages, 2005/03

JAERI-Tech-2005-014.pdf:7.25MB

In a hydrogen production system using HTTR, it is required to control a secondary helium gas temperature within an allowable value at an intermediate heat exchanger (IHX) inlet to prevent a reactor scram. To mitigate thermal disturbance of the secondary helium gas caused by the hydrogen production system, a cooling system of the secondary helium gas using a steam generator(SG) and a radiator will be installed at the downstream of the chemical reactor. In order to verify a numerical analysis code of the cooling system, numerical analysis has been conducted. The pressure controllability in SG is highly affected by the heat transfer characteristics of air which flows outside of the heat exchanger tube of the radiator. In order to verify a numerical analysis code of the cooling system, the heat transfer characteristics of air has been investigated with experimental results of a mock-up model test. It was confirmed that numerical analysis results were agreed well with experimental results, and the analysis code was successfully verified.

JAEA Reports

Development of dynamic analysis code for HTTR hydrogen production system (Contract research)

Maeda, Yukimasa; Nishihara, Tetsuo; Ohashi, Hirofumi; Sato, Hiroyuki; Inagaki, Yoshiyuki

JAERI-Data/Code 2005-001, 149 Pages, 2005/03

JAERI-Data-Code-2005-001.pdf:12.66MB

A heat and mass balance analysis code (N-HYPAC) has been developed to investigate transient behavior in the HTTR hydrogen production system. The code can analyze heat and mass transfer (temperature and mass and pressure distributions of process and helium gases) and behavior of the control system under both static state(case of steady operation) and dynamic state(case of transient operation). Analysis model of helium and process gases from IHX to secondary helium loop and hydrogen production system has been constructed. This report describes analytical flow sheet, construction of the code, basic equations, method to treat the input data, estimation of the preliminary analysis.

Journal Articles

Temperature transient analysis of gas circulator trip test using the HTTR

Takamatsu, Kuniyoshi; Furusawa, Takayuki; Hamamoto, Shimpei; Nakagawa, Shigeaki

Proceedings of 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-6) (CD-ROM), 11 Pages, 2004/10

Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify the inherent safety features for High Temperature Gas-cooled Reactors (HTGRs). The coolant flow reduction test by tripping one or two out of three gas circulators is one of the safety demonstration tests. The reactor power safely brings to a stable level without a reactor scram and the temperature transient of the reactor-core is very slow. Through the safety demonstration test, the two dimensional temperature analysis code (TAC-NC code) was improved. This paper describes the validation of the TAC-NC code using the measured value of the test by tripping of one and two out of three gas circulators at 30%(9MW). The TAC-NC code could evaluate accurately the temperature transient within 10% during the test. Also, it was confirmed that the temperature transient by tripping all gas circulators is very slow.

Journal Articles

Towards to realize a quake-proof information control and management system for nuclear power plant

Nakajima, Norihiro; Kimura, Hideo; Higuchi, Kenji; Aoyagi, Tetsuo; Suzuki, Yoshio; Hirayama, Toshio; Yagawa, Genki

Dai-23-Kai Nihon Shimyureshon Gakkai Taikai Happyo Rombunshu, p.117 - 120, 2004/06

The pablic acceptance of nuclear power plants operations requests information of status for the safety and ease. Previous technology in computational scinece is generarlly carried out the analysis as an uniform structure, although the plants are assembled by thousand of parts. The proposed approach is to develope assembled structural analysis and fluid/heat analyis in assembled structures under the natural and actual environmnet such as daily operation, small quakeing which does not induce shut down procedure, and so on.

Journal Articles

Study on natural convection heat transfer of high temperature gas in a vertical annular space of a double coaxial cylinder

Inaba, Yoshitomo; Zhang, Y.*; Takeda, Tetsuaki; Shiina, Yasuaki

Nihon Kikai Gakkai Rombunshu, B, 70(694), p.1518 - 1525, 2004/06

no abstracts in English

Journal Articles

Development of plant dynamics analytical code named Conan-GTHTR for the Gas Turbine High Temperature Gas-cooled Reactor, 1; Code validation by Use of the experimental data of HTTR

Takamatsu, Kuniyoshi; Katanishi, Shoji; Nakagawa, Shigeaki; Kunitomi, Kazuhiko

Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(1), p.76 - 87, 2004/03

The Gas Turbine High Temperature Reactor 300 (GTHTR300) composed of an inherent safe 600MWt reactor and a closed gas turbine power conversion system is a high efficient and economically competitive HTGR to be deployed in 2010s. To analyze the plant dynamics and the thermal hydraulics of the GTHTR300, a new analytical code (Conan-GTHTR) based on 'RELAP5/MOD3' has been developed and applied to heat transfer calculations of the High Temperature Engineering Test Reactor (HTTR) for its verification. The results proved that the new code was available for transient simulations in Higt Temperature Gas-Cooled Reactor systems.

84 (Records 1-20 displayed on this page)