Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2020 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2021-025, 159 Pages, 2022/01

JAEA-Technology-2021-025.pdf:46.66MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2020. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of the air dose rates were analyzed. Regarding radiocesium deposition into the ground, surveys on depth profile of radiocesium and in-situ measurements were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. In the examination of scoring for classifying the importance of measurement points, a score map was created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2020 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-020, 138 Pages, 2021/11

JAEA-Technology-2021-020.pdf:17.11MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.

JAEA-Technology 2020-019, 128 Pages, 2021/02

JAEA-Technology-2020-019.pdf:15.75MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Dai-ichi Nuclear Power Station Accident in the fiscal year 2019 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2020-014, 158 Pages, 2020/12

JAEA-Technology-2020-014.pdf:23.82MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2019. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of the air dose rates were analyzed. Regarding radiocesium deposition into the ground, surveys on depth profile of radiocesium and in-situ measurements were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. In the examination of scoring to classify the importance of measurement points, we created a score map of Fukushima Prefecture and that within 80 km from the FDNPS based on the "score" method developed in 2018. The way of monitoring radioactive materials in land area was examined and the representativeness of monitoring points was proposed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2019 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Investigations on distribution of radioactive substances owing to the FDNPP accident in the fiscal year 2018 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2019-019, 135 Pages, 2020/03

JAEA-Technology-2019-019.pdf:22.01MB

After the accident at TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS), distribution situation survey on radioactive materials have been conducted with financially supported by the Ministry of Education, Culture, Sports, Science and Technology (later the Nuclear Regulatory Agency) from June 2011 to FY2018. Results obtained in the project in FY2018 are presented in this report. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of air dose rate were analyzed. Regarding radiocesium deposition in the soil, depth profile survey in the soil and in-situ measurement were performed. Based on these measurement results, effective half-life of the air dose rate and the deposition were evaluated. Considering radiation monitoring data obtained in previous surveys and the installation positions of existing monitoring posts, we tried to make the "score" of the importance of measurement points. Using the Bayesian hierarchical modeling approach, we obtained a map that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys for the entire region within 80 km from the FDNPS. The measurement results for FY2018 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and environmental sample analysis owing to the comprehensive radiation monitoring plan were carried out.

Journal Articles

Application of the forest shielding factor to the maximum-likelihood expectation maximization method for airborne radiation monitoring

Sasaki, Miyuki; Sanada, Yukihisa; Yamamoto, Akio*

Radiation Protection Dosimetry, 184(3-4), p.400 - 404, 2019/10

 Times Cited Count:1 Percentile:23.13(Environmental Sciences)

The maximum-likelihood expectation maximization (ML-EM) method is expected to improve the accuracy of airborne radiation monitoring using an unmanned aerial vehicle. The accuracy of the ML-EM method depends on various parameters, including detector efficiency, attenuation factor, and shielding factor. In this study, we evaluate the shielding factor of trees based on several field radiation measurements. From the actual measurement, the shielding factors were well correlated with the heights of the trees. The evaluated shielding factors were applied to the ML-EM method in conjunction with the measured data obtained from above the Fukushima forest. Compared with the conventional methods used for calculating the dose rate, the proposed method is found to be more reliable.

Journal Articles

Characteristics of radiocesium contamination of dry riverbeds due to the Fukushima Daiichi Nuclear Power Plant accident assessed by airborne radiation monitoring

Azami, Kazuhiro*; Otagaki, Takahiro*; Ishida, Mutsushi; Sanada, Yukihisa

Landscape and Ecological Engineering, 14(1), p.3 - 15, 2018/01

 Times Cited Count:1 Percentile:11.51(Biodiversity Conservation)

Journal Articles

Airborne radiation monitoring using a manned helicopter

Sanada, Yukihisa; Ishizaki, Azusa; Nishizawa, Yukiyasu; Urabe, Yoshimi*

Bunseki Kagaku, 66(3), p.149 - 162, 2017/03

 Times Cited Count:8 Percentile:43.59(Chemistry, Analytical)

The Great East Japan Earthquake that occurred on 11 March 2011 generated a series of large tsunami waves that caused serious damage to the Fukushima Dai-ichi Nuclear Power Station, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. The airborne radiation measurement using a manned helicopter was applied to measure the radiation distribution immediately after accident of the Fukushima Dai-ichi Nuclear Power Station as technique to quickly measure the radiation distribution in the wide area. In Japan, this technique was researched and developed in the 1980s. However, this technique and system were not applied immediately after the accident because standardization of analysis was not established and the Japanese system became deteriorated. This technique is important for post-accident of nuclear facility. We summarized the methods of the airborne radiation measurement using a manned helicopter. In addition, measurement results of dose rate distribution at the Fukushima Dai-ichi Nuclear Power Station was shown in this paper.

JAEA Reports

Radiation monitoring using manned helicopter around the Fukushima Daiichi Nuclear Power Station in the fiscal year 2013 (Contract research)

Sanada, Yukihisa; Nishizawa, Yukiyasu; Urabe, Yoshimi; Yamada, Tsutomu; Ishida, Mutsushi; Sato, Yoshiharu; Hirayama, Hirokatsu; Takamura, Yoshihide; Nishihara, Katsuya; Imura, Mitsuo; et al.

JAEA-Research 2014-012, 110 Pages, 2014/08

JAEA-Research-2014-012.pdf:169.17MB
JAEA-Research-2014-012(errata).pdf:0.27MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (NPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. This document was summarized in the results of the aerial radiation monitoring using the manned helicopter in the fiscal 2013.

JAEA Reports

Intercomparison of measuring and evaluation methods for environmental radiations

Saito, Kimiaki; Nagaoka, Toshi; Sakamoto, Ryuichi; Tsutsumi, Masahiro; Moriuchi, Shigeru; *

JAERI-M 90-188, 40 Pages, 1990/11

JAERI-M-90-188.pdf:1.18MB

no abstracts in English

Oral presentation

Oral presentation

Experience of airborne radiation monitoring after the Fukushima Dai-ichi Nuclear Station accident

Sanada, Yukihisa

no journal, , 

This article presents the methods and the results of manned helicopter radiation monitoring and unmanned helicopter radiation monitoring carried out around Fukushima Dai-ichi Nuclear Power Station after the accident.

13 (Records 1-13 displayed on this page)
  • 1