Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Establishment of reasonable 2-D model to investigate heat transfer and flow characteristics by using scale model of vessel cooling system for HTTR

Takada, Shoji; Ngarayana, I. W.*; Nakatsuru, Yukihiro*; Terada, Atsuhiko; Murakami, Kenta*; Sawa, Kazuhiro*

Mechanical Engineering Journal (Internet), 7(3), p.19-00536_1 - 19-00536_12, 2020/06

In this study reasonable 2D model was established by using FLUENT for start-up of analysis and evaluation of heat transfer flow characteristics in 1/6 scale model of VCS for HTTR. By setting up pressure vessel temperature around 200$$^{circ}$$C about relatively high ratio of heat transfer via natural convection in total heat removal around 20-30%, which is useful for code to experiment benchmark in the aspect to confirm accuracy to predict temperature distribution of components which is heated up by natural convection flow. The numerical results of upper head of pressure vessel by the $$kappa$$-$$omega$$-SST intermittency transition model, which can adequately reproduce the separation, re-adhesion and transition, reproduced the test results including temperature distribution well in contrast to those by the $$kappa$$-$$varepsilon$$ model in both cases that helium gas is evacuated or filled in the pressure vessel. It was emerged that any local hot spot did not appear on the top of upper head of pressure vessel where natural convection flow of air is separated in both cases. In addition, the plume of high temperature helium gas generated by the heating of heater was well mixed in the upper head and uniformly heated the inner surface of upper head without generating hot spots.

JAEA Reports

Flow separation at inlet causing transition and intermittency in circular pipe flow

Ogawa, Masuro*

JAEA-Technology 2019-010, 22 Pages, 2019/07

JAEA-Technology-2019-010.pdf:1.5MB

Transition phenomena from laminar to turbulent flow are roughly classified into three categories. Circular pipe flow of the third category is linearly stable against any small disturbance, despite that flow actually transitions and transitional flow exhibits intermittency. These are among major challenges that are yet to be resolved in fluid dynamics. Thus, author proposes hypothesis as follows; "Flow in a circular pipe transitions from laminar flow because of vortices released from separation bubble forming in vicinity of inlet of pipe, and transitional flow becomes intermittent because vortex-shedding is intermittent." Present hypothesis can easily explain why linear stability theory has not been able to predict transition in circular pipe flow, why circular pipe flow actually transitions, why transitional flow actually exhibits intermittency even due to small disturbance, and why numerical analysis has not been able to predict intermittency of transitional flow in circular pipe.

Journal Articles

Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak

Ido, Takeshi*; Miura, Yukitoshi; Hoshino, Katsumichi; Kamiya, Kensaku; Hamada, Yasuji*; Nishizawa, Akimitsu*; Kawasumi, Yoshiaki*; Ogawa, Hiroaki; Nagashima, Yoshihiko*; Shinohara, Koji; et al.

Nuclear Fusion, 46(5), p.512 - 520, 2006/05

 Times Cited Count:80 Percentile:93.3(Physics, Fluids & Plasmas)

The electrostatic fluctuation spectrum and the fluctuation-induced particle flux of the JFT-2M tokamak were estimated using the hevy ion beam probe (HIBP) measurement. A geodesic acoustic mode (GAM) of the frequency about15kHz was identified in the L-mode. The GAM has its peak at about 3cm inside of the separatrix with the electric field of about 1.4kV/m. The estimated turbulent particle flux is found to be intermittent. It is found that the density fluctuation is modulated by the GAM in the wide frequency range and the coherence analysis shows that the flucruation-induced particle flux is partially contributed by the GAM. In the H-mode the GAM disappears and the fluctuation and the flux is much decreased.The mechanism of the large burst-like flux in the L-mode is not understood yet and left as the future problem.

Journal Articles

Interaction between small-scale zonal flows and large-scale turbulence; A Theory for ion transport intermittency in tokamak plasmas

Li, J.; Kishimoto, Yasuaki

Physical Review Letters, 89(11), p.115002_1 - 115002_4, 2002/09

 Times Cited Count:31 Percentile:78.24(Physics, Multidisciplinary)

Interaction between small-scale zonal flows and large-scale turbulence is investigated. The key mechanism is identified as radially non-local mode coupling. Fluctuating energy can be non-locally transferred from the unstable longer to stable or damped shorter wavelength region, so that turbulence spectrum is seriously deformed and deviated from the nonlinear power law structure. Three-dimensional gyro-fluid ion temperature gradient (ITG) turbulence simulations show that an ion transport bursting behavior is consistently linked to the spectral deformity with the causal role of ITG-generated zonal flows in tokamak plasmas.

Journal Articles

Optical measuremet of waves on high speed water jet

Ito, Kazuhiro*; Tsuji, Yoshiyuki*; Nakamura, Hideo; Kukita, Yutaka*

9th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9)(CD-ROM), 16 Pages, 1999/00

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1