検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

A Novel method to improve methane generation from waste sludge using iron nanoparticles coated with magnesium hydroxide

Eljamal, R.*; Maamoun, I.; Bensaida, K.*; Yilmaz, G.*; 杉原 裕司*; Eljamal, O.*

Renewable and Sustainable Energy Reviews, 158, p.112192_1 - 112192_13, 2022/04

 被引用回数:37 パーセンタイル:94.80(Green & Sustainable Science & Technology)

In response to the low efficiency of the anaerobic digestion (AD) process in generating methane gas, we apply for the first time the use of coated/ Fe$$^{0}$$ with Mg(OH)$$_{2}$$ to enhance the production rate of methane gas from the degradation of waste sludge. A series of batch tests investigated several operations factors followed by a semi-continuous operation system examined the long-term production of methane gas in the presence of the coated/ Fe$$^{0}$$ were performed. The coating ratio of Mg(OH)$$_{2}$$/Fe$$^{0}$$ and the dosage of coated/Fe$$^{0}$$ were optimized to acquire the highest production rate of methane as 0.5% and 25 mg/gVS, respectively. Under these optimum conditions, the methane production increased by 46.6% in the batch tests and 120% in the semi-continuous operation system compared to the control reactor. The results revealed that both Fe$$^{0}$$ and Mg(OH)$$_{2}$$ did not significantly improve the production of methane when each one was used alone at different dosages, and the improved methane production originated from the synergetic effect of combining these two materials. The crucial role of Mg(OH)$$_{2}$$ coating layer was associated with the controlled reactivity release of Fe$$^{0}$$, which was indicated by the slow release of ferrous and ferric ions in the bioreactors. Furthermore, the addition of coated/Fe$$^{0}$$ stimulated bacterial growth, increased methane content, and maintained the pH within the optimum range in the bioreactors. The dosing time of coated/Fe$$^{0}$$ was investigated during the four stages of AD process, and the best dosing time was found in the methanogenic stage (on Day 4). Overall, based on the experimental and predicted methane production, the coated/Fe$$^{0}$$ has a great potential for the practical applications of AD.

口頭

Perrhenate (ReO$$_{4}$$$$^{-}$$) removal from aqueous solutions by mono-, bi-, and tri-metallic iron nanoparticles; A Comparative study

Maamoun, I.; 徳永 紘平; Falyouna, O.*; Eljamal, O.*; 田中 万也

no journal, , 

Recently, the rapid development of nuclear power technologies and the continuous energy demand around the world exhibited massive amounts of contaminated water with radionuclides. The exposure to TcVII-contaminated water can be harmful to human health, causing toxic effects and organs damage when ingested. Therefore, TcO $$_{4}$$$$^{-}$$ removal from aqueous solutions can be challenging, in terms of fast and efficient immobilization. Correspondingly, perrhenate (ReO$$_{4}$$$$^{-}$$) was considered as perrhenate (TcO$$_{4}$$$$^{-}$$) surrogate to ease the radioactivity-related complications, owing to the physiochemical similarities between Tc and rhenium (Re). In this study, nickel (Ni) andzirconium (Zr) were considered in the preparation of bi- and tri-metallic Fe0 nanoparticles, as they both showed the highest ReO $$_{4}$$$$^{-}$$ removal performance comparing with other metals. The effect of reaction conditions on ReO $$_{4}$$$$^{-}$$ removal was investigated, including mass ratio of iron to the doped metal, material dosage, and initial pH. Results showed enhanced ReO $$_{4}$$$$^{-}$$ removal rate when using bi-metallic Ni-Fe0 (mass ratio 2.5) and Zr/Fe0 (mass ratio 20) comparing with Fe0. The difference in ReO$$_{4}$$$$^{-}$$ removal using mono-, bi-, and tri-metallic was not clear at high material dosage, such as 2.0 and 1.0 g/L. Nevertheless, comparing lower dosage (0.5 g/L)of bi- and tri-metallic to 1.0 g/L mono-metallic Fe0 dosage exhibited a clear superiority of tri-metallic Zr-Ni/Fe0 to other materials; where 0.5 g/L of the material could efficiently achieve around 98% ReO$$_{4}$$$$^{-}$$ removal within just 10 min reaction time (1.8 times higher than 1.0 g/L Fe0). The significant enhancement in ReO$$_{4}$$$$^{-}$$ removal rate by tri-metallic Fe0 nanoparticles can be attributed to the induced rate of electron transfer from iron core through the mixed Zr-Nideposits on Fe0 surface.

2 件中 1件目~2件目を表示
  • 1