Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Pyeon, C. H.*; Oizumi, Akito; Katano, Ryota; Fukushima, Masahiro
Nuclear Science and Engineering, 16 Pages, 2024/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Experimental analyses of neptunium-237 (Np), americium-241 (
Am), and
Am fission and
Np capture reaction rates are conducted by the Serpent 2 code together with ENDF/B-VIII.0 and JENDL-5, using experimental data at neutron spectra of thermal and intermediate regions obtained in the solid-moderated and solid-reflected cores with highly-enriched uranium fuel at the Kyoto University Critical Assembly. Also, uncertainty quantification of fission and capture reaction rate ratios of test samples of
Np,
Am and
Am with reference samples of uranium-235 (
U) and gold-197 (
Au) are evaluated by the MARBLE code system. In terms of fission reaction rate ratios of
Np/
U,
Am/
U and
Am/
U, a comparison between experiments and Serpent 2 calculations shows an accuracy about 5, 15 and 10%, respectively, together with ENDF/B-VIII.0 and JENDL-5. For capture reaction rate ratios of
Np/
Au, Serpent 2 calculations reveal a fairly good accuracy at the thermal neutron spectrum. The total uncertainties of
Np/
U,
Am/
U and
Am/
U fission reaction rate ratios by MARBLE with the covariance data of ENDF/B-VIII.0 and JENDL-5 are found to be about 4% at most in all cores, except for about 8% of
Am/
U with ENDF/B-VIII.0 at the intermediate neutron spectrum.
Pyeon, C. H.*; Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro
Nuclear Science and Engineering, 197(11), p.2902 - 2919, 2023/11
Times Cited Count:2 Percentile:57.39(Nuclear Science & Technology)Sample reactivity and void reactivity experiments are carried out in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA) with the combined use of aluminum (Al), lead (Pb) and bismuth (Bi) samples, and Al spacers simulating the void. MCNP6.2 eigenvalue calculations together with JENDL-4.0 provide good accuracy of sample reactivity with the comparison of experimental results; also experimental void reactivity is attained by using MCNP6.2 together with JENDL-4.0 and ENDF/B-VII.1 with a marked accuracy of relative difference between experiments and calculations. Uncertainty quantification of sample reactivity and void reactivity is acquired by using the sensitivity coefficients based on MCNP6.2/ksen and covariance library data of SCALE6.2 together with ENDF/B-VII.1, arising from the impact of uncertainty induced by Al, Pb and Bi cross sections. A series of reactivity analyses with the Al spacer simulating the void demonstrates the means of analyzing the void in the solid-moderated and solid-reflected cores at KUCA
Okita, Shoichiro; Fukaya, Yuji; Sakon, Atsushi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*
Nuclear Science and Engineering, 197(8), p.2251 - 2257, 2023/08
Times Cited Count:1 Percentile:17.57(Nuclear Science & Technology)Okita, Shoichiro; Fukaya, Yuji; Sakon, Atsushi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*
Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 9 Pages, 2022/05
Pyeon, C. H.*; Yamanaka, Masao*; Fukushima, Masahiro
Nuclear Science and Engineering, 195(8), p.877 - 889, 2021/08
Times Cited Count:6 Percentile:60.59(Nuclear Science & Technology)Uncertainty quantification of lead (Pb) and bismuth (Bi) sample reactivity worth is numerically determined using the SCALE6.2 code system and experimental results obtained from the solid-moderated and solid-reflected core at the Kyoto University Critical Assembly (KUCA) to demonstrate the sensitivity coefficients of aluminum (Al) and Bi scattering reactions. From the results of the numerical analyses, the impact of Al and
Bi scattering cross sections obtained using SCALE6.2/TSAR is disclosed on the Bi sample reactivity worth using Al reference and Bi test samples, although the uncertainty itself is small in the Bi sample reactivity worth.
Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro; Pyeon, C. H.*
KURNS Progress Report 2020, P. 102, 2021/07
For the design study of ADS, integral experimental data of LBE is necessary to validate cross sections of lead (Pb) and bismuth (Bi). In this study, we conducted Pb and Bi void reactivity measurements using aluminum (Al) void space in Kyoto University Critical Assembly (KUCA). We found that the calculations overestimate the void reactivities of Pb and Bi by about 20 pcm.
Fukaya, Yuji; Goto, Minoru; Nakagawa, Shigeaki; Nakajima, Kunihiro*; Takahashi, Kazuki*; Sakon, Atsushi*; Sano, Tadafumi*; Hashimoto, Kengo*
EPJ Web of Conferences, 247, p.09017_1 - 09017_8, 2021/02
The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs). The objectives are to introduce a generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to introduce reactor noise analysis to High Temperature Engineering Test Reactor (HTTR) experiment to observe subcriticality. To achieve the objectives, the reactor core of graphite-moderation system named B7/4"G2/8"p8EUNU+3/8"p38EU(1) was newly composed in the B-rack of Kyoto University Critical Assembly (KUCA). The core is composed of the fuel assembly, driver fuel assembly, graphite reflector, and polyethylene reflector. The fuel assembly is composed of enriched uranium plate, natural uranium plate and graphite plates to realize the average fuel enrichment of HTTR and it's spectrum. However, driver fuel assembly is necessary to achieve the criticality with the small-sized core. The core plays a role of the reference core of the bias factor method, and the reactor noise was measured to develop the noise analysis scheme. In this study, the overview of the criticality experiments is reported. The reactor configuration with graphite moderation system is rare case in the KUCA experiments, and this experiment is expected to contribute not only for an HTGR development but also for other types of a reactor in the graphite moderation system such as a molten salt reactor development.
Sakon, Atsushi*; Nakajima, Kunihiro*; Takahashi, Kazuki*; Hohara, Shinya*; Sano, Tadafumi*; Fukaya, Yuji; Hashimoto, Kengo*
EPJ Web of Conferences, 247, p.09009_1 - 09009_8, 2021/02
In graphite-reflected thermal reactors, even a detector placed far from fuel region may detect a certain degree of the correlation amplitude. This is because mean free path of neutrons in graphite is longer than that in water or polyethylene. The objective of this study is experimentally to confirm a high flexibility of neutron detector placement in graphite reflector for reactor noise analysis. The present reactor noise analysis was carried out in a graphite-moderated and -reflected thermal core in Kyoto University Critical Assembly (KUCA). BF proportional neutron counters (1" dia.) were placed in graphite reflector region, where the counters were separated by about 35cm and 30cm -thick graphite from the core, respectively. At a critical state and subcritical states, time-sequence signal data from these counters were acquired and analyzed by a fast Fourier transform (FFT) analyzer, to obtain power spectral density in frequency domain. The auto-power spectral density obtained from the counters far from the core contained a significant degree of correlated component. A least-squares fit of a familiar formula to the auto-power spectral density data was made to determine the prompt-neutron decay constant. The decay constant was 63.3
14.5 [1/s] in critical state. The decay constant determined from the cross-power spectral density and coherence function data between the two counters also had a consistent value. It is confirmed that reactor noise analysis is possible using a detector placed at about 35cm far from the core, as we expected.
Fukaya, Yuji; Goto, Minoru; Nakagawa, Shigeaki
JAEA-Conf 2020-001, p.27 - 32, 2020/12
Recently, HTGR attracts a particular attention due to the outstanding safety features especially after the Fukushima Daiichi nuclear disaster, and the R&D is significantly promoted. In this presentation, we introduce the R&D plan of HTGR and the activities related to reactor physics and nuclear data including an experiment by using KUCA. Furthermore, requirement for nuclear data from the HTGR design is discussed.
Fukushima, Masahiro; Oizumi, Akito; Yamanaka, Masao*; Pyeon, C. H.*
KURNS Progress Report 2019, P. 143, 2020/08
For the design study of ADS, integral experimental data of nuclear characteristics of LBE is necessary to validate cross sections of lead (Pb) and bismuth (Bi). The calculation agree with experiment for the Bi sample worth. On the other hand, the calculation overestimates for the Pb sample worth.
Fukaya, Yuji; Goto, Minoru; Nakagawa, Shigeaki; Nakajima, Kunihiro*; Takahashi, Kazuki*; Sakon, Atsushi*; Sano, Tadafumi*; Hashimoto, Kengo*
Proceedings of International Conference on the Physics of Reactors; Transition To A Scalable Nuclear Future (PHYSOR 2020) (USB Flash Drive), 8 Pages, 2020/03
The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs). The objectives are to introduce a generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to introduce reactor noise analysis to High Temperature Engineering Test Reactor (HTTR) experiment to observe subcriticality. To achieve the objectives, the reactor core of graphite-moderation system named B7/4"G2/8"p8EUNU+3/8"p38EU(1) was newly composed in the B-rack of Kyoto University Critical Assembly (KUCA). The core is composed of the fuel assembly, driver fuel assembly, graphite reflector, and polyethylene reflector. The fuel assembly is composed of enriched uranium plate, natural uranium plate and graphite plates to realize the average fuel enrichment of HTTR and it's spectrum. However, driver fuel assembly is necessary to achieve the criticality with the small-sized core. The core plays a role of the reference core of the bias factor method, and the reactor noise was measured to develop the noise analysis scheme. In this study, the overview of the criticality experiments is reported. The reactor configuration with graphite moderation system is rare case in the KUCA experiments, and this experiment is expected to contribute not only for an HTGR development but also for other types of a reactor in the graphite moderation system such as a molten salt reactor development.
Pyeon, C. H.*; Talamo, A.*; Fukushima, Masahiro
Journal of Nuclear Science and Technology, 57(2), p.133 - 135, 2020/02
Times Cited Count:4 Percentile:95.79(Nuclear Science & Technology)Katano, Ryota; Yamanaka, Masao*; Pyeon, C. H.*
Journal of Nuclear Science and Technology, 57(2), p.169 - 176, 2020/02
Times Cited Count:4 Percentile:36.10(Nuclear Science & Technology)We proposed the linear combination method as a subcriticality measurement method which estimates the prompt neutron decay constant () correlated with the subcriticality using measurement results obtained at multiple detector positions. In the previous study, we confirmed applicability of the linear combination method through the pulsed neutron experiment with DT neutron source at Kyoto University Critical Assembly (KUCA). In this study, we conduct the pulsed neutron source experiment with spallation neutrons at KUCA and confirm the robustness of the linear combination to neutron sources.
Katano, Ryota; Yamanaka, Masao*; Pyeon, C. H.*
Nuclear Science and Engineering, 193(12), p.1394 - 1402, 2019/12
Times Cited Count:6 Percentile:43.37(Nuclear Science & Technology)The author proposed the linear combination method as a subcriticality measurement method which estimates the prompt neutron decay constant (alpha) correlated with the subcriticality using measurement results obtained at multiple detector positions. In this study, we conduct the pulsed neutron experiment at Kyoto University Critical Assembly (KUCA) and measure alpha by the linear combination method using measured neutron counts. Through experiment, we experimentally show that the linear combination method can reduce the higher-mode effect compared to the conventional method. In addition, experimentally show that the linear combination has capability of the different mode extraction.
Fukaya, Yuji; Nakagawa, Shigeaki; Goto, Minoru; Ishitsuka, Etsuo; Kawakami, Satoru; Uesaka, Takahiro; Morita, Keisuke; Sano, Tadafumi*
KURNS Progress Report 2018, P. 148, 2019/08
The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs). The objectives are to introduce generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to introduce reactor noise analysis to High Temperature Engineering Test Reactor (HTTR) experiment. To achieve the objectives, the reactor core of graphite moderation system named B7/4"G2/8"p8EUNU+3/8"p38EU(1) was newly composed in the B-rack of Kyoto University Critical Assembly (KUCA). The core plays a role of the reference core of the bias factor method, and the reactor noise was measured to develop the noise analysis scheme. In addition, training of operator of HTTR was also performed during the experiments.
Fukushima, Masahiro; Oizumi, Akito; Yamanaka, Masao*; Pyeon, C. H.*
KURNS Progress Report 2018, P. 143, 2019/08
For the design study of ADS, integral experimental data of nuclear characteristics of LBE is necessary to validate cross sections of lead (Pb) and bismuth (Bi). In present study, sample worth measurements were carried out with systematically changed mixing ratios of lead and bismuth, which would be complementary to the previous data of Pb and Bi samples individually measured in FY 2013 and FY 2017, respectively.
Pyeon, C. H.*; Yamanaka, Masao*; Oizumi, Akito; Fukushima, Masahiro; Tsujimoto, Kazufumi
Journal of Nuclear Science and Technology, 55(11), p.1324 - 1335, 2018/11
Times Cited Count:9 Percentile:62.92(Nuclear Science & Technology)Sample reactivity worth experiments are carried out by substituting aluminum (Al) plates for bismuth (Bi) ones at the Kyoto University Critical Assembly. At the beginning, uncertainty quantification of bismuth isotope is conducted by deterministic calculations with nuclear data library JENDL-4.0, with the use of experimental results of sample reactivity worth. Then, with the combined use of current (Bi) and previous (Pb) experimental results that demonstrate the comparative difference in the sensitivity and uncertainty of Bi and Pb isotopes, experimental results of cross-section uncertainties of Bi isotope are available for examination of neutron characteristics of Pb-Bi coolant material in the accelerator-driven system. From the experimental analyses, further uncertainty analyses by neutron transport calculations are needed for several reactions of Bi isotope, especially with the use of the covariance data of capture, elastic scattering and inelastic scattering reactions in another nuclear data library.
Takahashi, Yoshiyuki*; Hori, Junichi*; Sano, Tadafumi*; Yagi, Takahiro*; Yashima, Hiroshi*; Pyeon, C. H.*; Nakamura, Shoji; Harada, Hideo
Proceedings of International Conference on the Physics of Reactors; Unifying Theory and Experiments in the 21st Century (PHYSOR 2016) (USB Flash Drive), p.645 - 652, 2016/05
For the reduction of radioactive toxicities, feasibility study of nuclear transmutation of minor actinides (MAs) and long-lived fission products (LLFPs) by utilizing innovative nuclear reactor system (i.e. fast breeder reactors and accelerator-driven systems) has been actively conducted. To design these nuclear reactor systems, the accurate nuclear data are required. Therefore, to obtain more accurate nuclear data, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides(AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program". In a part of this project, the nuclear data of MAs are verified in the variable neutron spectra field at Kyoto University Research Reactor Institute-LINear ACcelerator (KURRI-LINAC) and Kyoto University Critical Assembly (KUCA). And the differential TOF data is cross-checked with an integral data for the validation of Np,
Am, and
Am. In this summary, the results of reaction rate of neutron capture cross section of
Np are reported as an example in the study.
Shiroya, Seiji*; Misawa, Tsuyoshi*; Unesaki, Hironobu*; Ichihara, Chihiro*; Kobayashi, Keiji*; Nakamura, Hiroshi*; Shin, Kazuo*; Imanishi, Nobutsugu*; Kanazawa, Satoshi*; Mori, Takamasa
JAERI-Tech 2004-025, 93 Pages, 2004/03
In view of the future plan of Research Reactor Institute, Kyoto University, the present study consisted of (1) the transmission experiments of high energy neutrons through materials, (2) experimental simulation of ADSR using the Kyoto University Critical Assembly(KUCA), and (3) conceptual neutronics design study on KUR type ADSR using the MCNP-X code. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR, which is indispensable to promote the study on ADSR, was obtained both theoretically and experimentally. For the realization of ADSR, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable (1) to compile the more precise nuclear data for the wide energy range, (2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement, and (3) to develop neutronics calculation tools which take into account the neutron generation process by the spallation reaction and the delayed neutron behavior.
Ando, Masaki; ; Nishina, Kojiro*;
Journal of Nuclear Science and Technology, 34(5), p.445 - 453, 1997/05
Times Cited Count:6 Percentile:47.54(Nuclear Science & Technology)no abstracts in English