Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo
Dai-43-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 3 Pages, 2022/11
Seya, Michio; Kobayashi, Naoki; Naoi, Yosuke; Hajima, Ryoichi; Soyama, Kazuhiko; Kureta, Masatoshi; Nakamura, Hironobu; Harada, Hideo
Book of Abstracts, Presentations and Papers of Symposium on International Safeguards; Linking Strategy, Implementation and People (Internet), 8 Pages, 2015/03
JAEA-ISCN has been implementing basic development programs of the advanced NDA technologies for nuclear material (NM) since 2011JFY (Japanese Fiscal Year), which are (1) NRF (Nuclear resonance fluorescence) NDA technology using laser Compton scattered (LCS) -rays (intense mono-energetic -rays), (2) Alternative to He neutron detection technology using ZnS/BO ceramic scintillator, and (3) NRD (Neutron resonance densitometry) using NRTA (Neutron resonance transmission analysis) and NRCA (Neutron resonance capture analysis). These programs are going to be finished in 2014JFY and have demonstration tests in February - March 2015.
Seya, Michio; Kureta, Masatoshi; Soyama, Kazuhiko; Nakamura, Hironobu; Harada, Hideo; Hajima, Ryoichi
Proceedings of INMM 55th Annual Meeting (Internet), 10 Pages, 2014/07
JAEA has been implementing development programs of basic technologies of the following advanced NDA (non-destructive assay) of nuclear material (NM) for nuclear safeguards and security. (1) Alternative to He neutron detection using ZnS/BO ceramic scintillator, (2) NRD (neutron resonance densitometry) using NRTA (neutron resonance transmission analysis) and NRCA (neutron resonance capture analysis), (3) NRF (nuclear resonance fluorescence)-NDA using laser Compton scattered (LCS) -rays (intense mono-energetic -rays). The development program (1) is for NDA systems that use ZnS/BO ceramic scintillator as alternative neutron detector to He for coming shortage of its supply. The program (2) is for a NDA system of isotopic composition measurement (non-destructive mass spectroscopy) in targets such as particle-like melted fuel debris using NRTA and NRCA. The program (3) is for NDA systems using a specific NRF reaction of certain Pu/U isotope caused by mono-energetic LCS -ray with energy tuned to the specific excited state of the isotope. This paper introduces above three programs.
Ogaki, Hideaki*; Zen, H.*; Shizuma, Toshiyuki*; Hayakawa, Takehito*; Omer, M.; Nishimoto, Kai*
no journal, ,
We are conducting research on the F-LCS beam, which can obtain a flat energy spectrum and spatial distribution suitable for multi-isotope imaging at the BL1U beamline of UVSOR. We have succeeded in producing an F-LCS beam with an energy spread extending to the low energy part, while suppressing the high energy part of the quasi-monochromatic energy spectrum with the highest energy edge, which is characteristic of normal LCS beams. We have also confirmed that the scattering angle dependence of the energy of F-LCS beam is as expected. We will report the result of measurements of the isotope ratio of natural lead using the F-LCS beam, comparing it with a normal LCS beam.