Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zheng, X.; 玉置 等史; 高原 省五; 杉山 智之; 丸山 結
Proceedings of Probabilistic Safety Assessment and Management (PSAM16) (Internet), 10 Pages, 2022/09
Uncertainty gives rise to the risk. For nuclear power plants, probabilistic risk assessment (PRA) systematically concludes what people know to estimate the uncertainty in the form of, for example, risk triplet. Capable of developing a definite risk profile for decision-making under uncertainty, dynamic PRA widely applies explicit modeling techniques such as simulation to scenario generation as well as the estimation of likelihood/probability and consequences. When quantifying risk, however, epistemic uncertainties exist in both PRA and dynamic PRA, as a result of the lack of knowledge and model simplification. The paper aims to propose a practical approach for the treatment of uncertainty associated with dynamic PRA. The main idea is to perform the uncertainty analysis by using a two-stage nested Monte Carlo method, and to alleviate the computational burden of the nested Monte Carlo simulation, multi-fidelity models are introduced to the dynamic PRA. Multi-fidelity models include a mechanistic severe accident code MELCOR2.2 and machine learning models. A simplified station blackout (SBO) scenario was chosen as an example to show practicability of the proposed approach. As a result, while successfully calculating the probability of large early release, the analysis is also capable to provide uncertainty information in the form probability distributions. The approach can be expected to clarify questions such as how reliable are results of dynamic PRA.
藤村 統一郎; 筒井 恒夫; 堀上 邦彦; 中原 康明; 大西 忠博*
Journal of Nuclear Science and Technology, 14(8), p.541 - 550, 1977/08
被引用回数:3先に、二次元(r,z)円柱体系における多群中性子輸送問題を有限要素法で解くアルゴリズムが開発され、簡単なモデルによる計算もなされた(日本原子力学会、昭和49年秋の分科会、同昭和50年年会での口頭発表)。 有限要素法は(r、z)面内の正規長方形小領域上の空間変数に応用されている。 本稿では、そのアルゴリズムのうち、双一次または双二次多項式を基底として用いた不連続法およびその計算結果について述べる。 原子炉の現実的な体系を中心としたいくつかの数値例が示されるが、双二次近似による解は精度も良く、粗いメッシュのときでも数値的に安定である。 また、汎用的なダイヤモンド差分法によるコードとの比較もなされ、また数値計算の結果を通じて不連続法の利点が示されている。