Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ariyoshi, Gen; Obayashi, Hironari; Sasa, Toshinobu
Journal of Nuclear Science and Technology, 59(9), p.1071 - 1088, 2022/09
Times Cited Count:1 Percentile:58.67(Nuclear Science & Technology)Electromagnetic induction method is one of the effective techniques for local velocity measurement in heavy liquid metals. Ricou and Vives' probe and Von Weissenfluh's probe are famous instrumentations using a permanent magnet. However, sensitivity and measurement volume of the probes show unexpected variation since demagnetization of the magnet is occurred by temperature increase up to the Curie temperature. In this study, electromagnetic probe incorporating a miniature electromagnet was newly developed to overcome such unexpected variation. The diameter and the length of the sensor was 6 mm and 155 mm, respectively. The sensitivity and the measurement volume of the probe were assessed by measurement of local velocity of flowing mercury in a square channel. To clarify the validity for the measured velocity profiles, numerical velocity profiles were calculated and compared with experiment. And the validity for the measured velocity profiles were confirmed by calculated result.
Sasa, Toshinobu
Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.211 - 215, 2022/05
Lead-bismuth eutectic (LBE) alloy is promising as a spallation target for next-generation reactor coolants and accelerator drive systems (ADS) due to its nuclear and chemical properties. LBE is a heavy metal, and it has good properties both as a spallation target and as a coolant for nuclear transmutation systems of long-lived radioactive nuclei. On the other hand, to improve compatibility with structural materials is one of the major issues in its utilization. The latest research results such as high-temperature operation of LBE and oxygen concentration control to ensure corrosion resistance with the aim of early commercialization of nuclear conversion technology by ADS is introduced.
Obayashi, Hironari; Yamaki, Kenichi*; Yoshimoto, Hidemitsu*; Kita, Satoshi*; Wan, T.*; Sasa, Toshinobu
JAEA-Technology 2021-035, 66 Pages, 2022/03
Construction of Transmutation Experimental Facility (TEF) is under planning in Japan Proton Accelerator Research Complex (J-PARC) program to promote R&Ds on realization of transmutation technology by an accelerator driven system (ADS). As a facility of TEF, ADS Target Test Facility (TEF-T) will provide a spallation target to study target technology and perform post irradiation examination (PIE) of candidate materials of ADS. In ADS, lead-bismuth eutectic (LBE) alloy is used as a spallation target material and a core coolant. As is well known, LBE has corrosive to structural materials hence each component of the target system should provide compatibility with LBE. In addition, instrumentations for LBE are restricted by the target operation condition such as high temperature and irradiation environment. The devices for LBE have been developed individually to achieve the LBE target system. "Integrated Multi-functional MOckup for TEF-T Real-scale TArget Loop, IMMORTAL" was fabricated as a mock-up test loop of the target for the purpose of the integration testing of individually developed devices. This report describes an overview of IMMORTAL and the design of the installed devices.
Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio
JAEA-Research 2021-018, 41 Pages, 2022/03
Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm. In the analysis of LBE,
Bi and
Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm
.
Sugawara, Takanori; Watanabe, Nao; Ono, Ayako; Nishihara, Kenji; Ichihara, Kyoko*; Hanzawa, Kohei*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 10 Pages, 2022/03
Japan Atomic Energy Agency (JAEA) has investigated an accelerator-driven system (ADS) to transmute minor actinides (MAs) included in high level wastes discharged from nuclear power plants. The ADS is a lead-bismuth cooled tank-type reactor with 800 MW thermal power. It is supposed that the ADS is safer than conventional critical reactors because it is operated in a subcritical state. The previous study performed the transient analyses for the typical ADS accidents such as unprotected loss of flow or beam overpower. It was shown that all calculation cases except loss of heat sink (LOHS) satisfied the no-damage criteria. To avoid the damage by LOHS, the ADS equips Direct Reactor Auxiliary Cooling System (DRACS) to remove the decay heat. The most important points of a DRACS operation are its reliability and to ensure the flowrate in a natural circulation state. This study aims to perform the CFD analysis of the natural circulation to clarify the flowrate in the ADS reactor vessel.
Maekawa, Fujio
JPS Conference Proceedings (Internet), 33, p.011042_1 - 011042_6, 2021/03
Development of beam window (BW) materials is one of crucial issues in development of accelerator driven nuclear transmutation systems (ADS). The BW is exposed to high energy protons and spallation neutrons, and also to corrosive lead-bismuth eutectic (LBE) alloy at high temperature of about 500C. Recently, not only high-power accelerators but also high-power targets are the rate-limiting factor for increasing the power of accelerator facilities in terms of radiation damage and heat removal. To study radiation damage on BW and target materials for high-power accelerator facilities including ADS, we are planning a materials irradiation facility by utilizing the proton beam of 400 MeV and 250 kW provided by the J-PARC's Linac. The target is flowing LBE alloy which is a candidate target and coolant material of ADS. When a steel sample is irradiated in the target for one year, the sample receives radiation damage of about 10 dpa at maximum which is equivalent to the yearly radiation damage of ADS's BW. In the current facility concept, the facility is equipped with a hot-laboratory for efficient post-irradiation examination. The facility will be outlined in this presentation.
Sugawara, Takanori; Komatsu, Atsushi
JAEA-Research 2020-016, 44 Pages, 2021/01
It is required to control the oxygen concentration in lead-bismuth eutectic (LBE) to prevent the corrosion of structures in LBE-cooled nuclear system. This study estimated the oxygen consumption amount in the LBE-cooled accelerator-driven system (ADS). We used the evaluation formula for the oxide layer thickness, which were derived by various experiments, to estimate the oxygen consumption amount. It was found that the maximum oxide layer thicknesses for the fuel assembly and the beam window were about 35 [m] and 20 [
m], respectively. Based on these results, the oxygen consumption amount for the ADS plant was estimated as 30 [kg] during one cycle (one year). Through this study, it was indicated that an oxygen supply device which could supply 3-4 [g/h] oxygen in the normal operation, 150 [g/h] in the peak and about 30 [kg] during one cycle was necessary.
Miyahara, Shinya*; Ohdaira, Naoya*; Arita, Yuji*; Maekawa, Fujio; Matsuda, Hiroki; Sasa, Toshinobu; Meigo, Shinichiro
Nuclear Engineering and Design, 352, p.110192_1 - 110192_8, 2019/10
Times Cited Count:4 Percentile:47.64(Nuclear Science & Technology)Lead-Bismuth Eutectic (LBE) is used as a spallation neutron target and coolant materials of Accelerator Driven System (ADS), and many kinds of elements are produced as spallation products. It is important to evaluate the release and transport behavior of the spallation products in the LBE. The inventories and the physicochemical composition of the spallation products produced in LBE have been investigated for an LBE loop in the ADS Target Test Facility (TEF-T) in J-PARC. The inventories of the spallation products in the LBE were estimated using the PHITS code. The physicochemical composition of the spallation products in the LBE was calculated using the Thermo-Calc code under the conditions of the operation temperatures of LBE from 350C to 500
C and the oxygen concentrations in LBE from 10 ppb to 1 ppm. The calculation showed that the 5 elements of Rb, Tl, Tc, Os, Ir, Pt, Au and Hg were soluble in LBE under the all given conditions and any kinds of compound were not formed in LBE. It was suggested that the oxides of Ce, Sr, Zr and Y were stable as CeO
, SrO, ZrO
and Y
O
in the LBE.
Ito, Daisuke*; Sato, Hirotaka*; Saito, Yasushi*; Parker, J. D.*; Shinohara, Takenao; Kai, Tetsuya
Journal of Visualization, 22(5), p.889 - 895, 2019/06
Times Cited Count:1 Percentile:8.62(Computer Science, Interdisciplinary Applications)Wan, T.; Naoe, Takashi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Obayashi, Hironari; Sasa, Toshinobu
Materials, 12(4), p.681_1 - 681_15, 2019/02
Times Cited Count:2 Percentile:7.53(Chemistry, Physical)Wan, T.; Obayashi, Hironari; Sasa, Toshinobu
Nuclear Technology, 205(1-2), p.188 - 199, 2019/01
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Sugawara, Takanori; Kita, Satoshi*; Yoshimoto, Hidemitsu*; Okubo, Nariaki
JAEA-Technology 2018-008, 26 Pages, 2018/09
The oxygen sensors to measure the oxygen concentration in liquid LBE (lead-bismuth eutectic) were fabricated and tested for future use in LBE-cooled ADS (accelerator-driven system) or LBE test loops. The following tests were performed; estimation of catalyst application range, freeze seal structure and estimation of gamma-ray irradiation effect. For the estimation of the catalyst application range, it was confirmed that the measurement accuracy became worse in low LBE temperature as the application range became small. For the freeze seal structure, we realized the structure to prevent the LBE leakage with 0.5 MPa pressure condition. For the estimation of gamma-ray irradiation effect, the ex-situ test was carried out and it was observed that there was little effect by 4 MGy gamma-ray irradiation.
Iwamoto, Hiroki; Maekawa, Fujio; Matsuda, Hiroki; Meigo, Shinichiro
JAEA-Technology 2017-029, 39 Pages, 2018/01
Under an assumption that an incident of lead-bismuth eutectic (LBE) leak from an LBE circulation system occurred during a 250-kW beam operation, an estimation of radiation dose at the site boundary for the ADS Target Test Facility (TEF-T) in Transmutation Experimental Facility (TEF) of J-PARC was conducted using various conservative assumptions. As a result, the radiation dose at the site boundary was estimated to be about 660 Sv, which were dominated by mercury, noble gas, and iodine produced as spallation products from the LBE. Even though the incident scenario was made conservatively, it was shown that the estimated total dose was lower than the annual radiation dose due to natural sources, and the TEF-T has sufficient safety margin for the leak of radioactivity.
Adhi, P. M.*; Okubo, Nariaki; Komatsu, Atsushi; Kondo, Masatoshi*; Takahashi, Minoru*
Energy Procedia, 131, p.420 - 427, 2017/12
Times Cited Count:0 Percentile:0.03The ionic conductivity of solid electrolyte may insufficient, and the sensor output signal will deviate from the theoretical one in low temperature. The performance of oxygen sensor with Ag/air reference electrode (RE) and liquid Bi/BiO
RE was tested in low-temperature LBE at 300
450
C and the charge transfer reactions impedance at the electrode-electrolyte interface was analyzed by electrochemical impedance analysis (EIS). After steady state condition, both of the sensors performed well and can be used at 300
450
C. Bi/Bi/Bi
O
RE has lower impedance than Ag/air RE. Therefore, the response time of the oxygen sensor with Bi/Bi/Bi
O
RE is faster than the oxygen sensor with Ag/air RE in the low-temperature region.
Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Sugawara, Takanori; Wan, T.; Yamaguchi, Kazushi*; Yoshimoto, Hidemitsu
NEA/CSNI/R(2017)2 (Internet), p.111 - 116, 2017/06
Japan Atomic Energy Agency (JAEA) proposes to reduce the environmental impact caused from high-level radioactive waste by using Accelerator-driven system (ADS). To realize ADS, JAEA plans to build the Transmutation Experimental Facility (TEF) within the framework of J-PARC project. For the JAEA-proposed ADS, lead-bismuth eutectic alloy (LBE) is adopted as a coolant for subcritical core and spallation target. By using TEF in J-PARC, we are planning to solve technical difficulties for LBE utilization by completion of the data for the design of ADS. The 250kW LBE spallation target will be located in TEF facility to prepare material irradiation database. Various R&Ds for important technologies required to build the facilities are investigated such as oxygen content control, instruments development, remote handling techniques for target maintenance, and spallation target design. The large scale LBE loops for 250kW target mock up and material corrosion studies are also manufactured and ready for various experiments. The latest status of 250kW LBE spallation target optimization will be described in the presentation.
Nuclear Transmutation Division, J-PARC Center
JAEA-Technology 2017-003, 539 Pages, 2017/03
JAEA is pursuing R&D on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste based on the "Strategic Energy Plan" issued in April 2014. Construction of Transmutation Experimental Facility is under planning as one of the second phase facilities in the J-PARC program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded subcritical cores, physical properties of the cores are to be studied, and operation experiences are to be acquired. This report summarizes results of technical design for construction of one of two TEF facilities, TEF-T.
Akimoto, Hajime; Sugawara, Takanori
JAEA-Data/Code 2016-008, 87 Pages, 2016/09
Thermal hydraulic behavior in a lead-bismuth cooled accelerator driven system (ADS) is analyzed under normal operation condition. Input data for the ADS version of J-TRAC code have been constructed to integrate the conceptual design. The core part of the ADS is modeled in detail to evaluate the core radial power profile effect on the core cooling. As the result of the analyses, the followings are found; (1) Both maximum clad temperature and fuel temperature are below the design limits. (2) The radial power profile has little effect on the coolant flow distribution among fuel assemblies. (3) The radial power profile has little effect on the heat transfer coefficients along fuel rods. (4) The thermal hydraulic behaviors along four steam generators are identical. The thermal hydraulic behaviors along two pumps are also identical. A fast running input data is developed by the simplification of the detailed input data based on the findings mentioned above.
Sasa, Toshinobu
JAEA-Review 2015-042, 213 Pages, 2016/03
The first topical meeting on Asian Network for Accelerator-driven System (ADS) and Nuclear Transmutation Technology (NTT) was held on 26-27 October 2015 at the J-PARC Center, Japan Atomic Energy Agency, Japan. The meeting was an optional one in-between the regular meeting, which will be held in every second year. Instead of the regular meeting, which covers all research fields for ADS and NTT, such as accelerator, spallation target, subcritical reactor, fuel, and material, this topical meeting is focused on the specific topic to make technical discussions more deeply. In this meeting, the technology for lead-bismuth eutectic alloy was selected as one of the hot issues in the world and had deep discussions with specialists in Asian countries. Through the discussion, the importance of cooperation in Again region is recognized to solve the issues for application of LBE. This report summarizes all presentation materials discussed in the meeting.
Akimoto, Hajime
JAEA-Data/Code 2014-031, 75 Pages, 2015/03
A thermal-hydraulic analysis code for transmutation system with lead-bismuth cooled accelerator-driven system (ADS) has been developed using the Japanese-version of Transient Reactor Analysis Code (J-TRAC) as the framework to apply the design studies of ADS. To identify the required capabilities of the thermal-hydraulic analysis code for ADS, previous thermal-hydraulic analyses of light water reactors, sodium-cooled fast reactor and ADS have been surveyed. To make up for insufficient capabilities of the J-TRAC code as a thermal-hydraulic analysis code of ADS, physical properties of lead-bismuth eutectic (LBE), argon gas and nitride nuclear fuel were implemented to the J-TRAC code. It was confirmed that the implemented capabilities worked as expected through verification calculations on (1) single-phase LBE flow, (2) heat transfer in a fuel assembly, and (3) heat transfer in a steam generator.
Sasa, Toshinobu; Yang, J. A.*; Oigawa, Hiroyuki
Radiation Protection Dosimetry, 116(1-4), p.256 - 258, 2005/12
Times Cited Count:0 Percentile:0.01(Environmental Sciences)The proton beam duct of the accelerator-driven system (ADS) acts a streaming path for spallation neutrons and photons and causes the activation of the magnets and other devices above the subcritical core. We have performed a streaming analysis at the upper section of the lead-bismuth target/cooled ADS (800MWth). MCNPX was used to calculate the radiation dose from streamed neutrons and photons through the beam duct. For the secondary photon production calculation, cross sections for several actinides were substituted for plutonium because of the lack of gamma production cross section. From the results of this analysis, the neutron dose from the beam duct is about 20 orders higher than that of the bulk shield. The magnets and shield plug were heavily irradiated by streaming neutrons according to the DCHAIN-SP analysis.