Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 315

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Flow regime and void fraction predictions in vertical rod bundle flow channels

Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 178, p.121637_1 - 121637_24, 2021/10

 Times Cited Count:0 Percentile:0.01(Thermodynamics)

JAEA Reports

Analysis of behavior of Ru with nitrogen oxide chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-005, 25 Pages, 2021/08

JAEA-Research-2021-005.pdf:2.91MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.

JAEA Reports

SCHERN-V2: Technical guide of computer program for chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Data/Code 2021-008, 35 Pages, 2021/08

JAEA-Data-Code-2021-008.pdf:3.68MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NO$$_{rm x}$$) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects to the migration behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NO$$_{rm x}$$ with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. The analysis program, SCHERN has been under developed to simulate chemical behavior including Ru coupled with the thermo-hydraulic condition in the flow paths in the facility building. This technical guide for SCHERN-V2 presents the overview of covered accident, analytical models including newly developed models, differential equations for numerical solution, and user instructions.

JAEA Reports

Preparation of carbonate slurry simulating chemical composition of slurry in overflowed high integrity container and evaluation of its characteristics

Horita, Takuma; Yamagishi, Isao; Nagaishi, Ryuji; Kashiwaya, Ryunosuke*

JAEA-Technology 2021-012, 34 Pages, 2021/07

JAEA-Technology-2021-012.pdf:2.1MB
JAEA-Technology-2021-012(errata).pdf:0.15MB

Waste mainly consisting of carbonate precipitates (carbonate slurry) from the Advanced Liquid Processing System (ALPS) and the improved ALPS at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Holdings, Inc. have been storing in the High Integrity Container (HIC). The supernatant solution of carbonate slurry contained in some of HICs were overflowed in April of 2015. The all of level of liquid in the HICs were investigated; however, almost of the HICs were under the level of overflow. The mechanism of overflow suggested to be depending on the difference of the properties of the carbonate slurry such as the retention/release characteristics of the bubbles. Therefore, in order to clarify the mechanism of leakage, the repeatability experiment was carried out by using simulated carbonate slurry. The simulated carbonate slurry was perpetrated by using the same cross-flow filter system of the actual ALPS. Moreover, the preparative conditions for the simulated carbonate slurry were the same as Mg/Ca concentration ratio in inlet water of the ALPS (raw water) and the ALPS operating conditions. The chemical characteristics of simulated carbonate slurries were revealed by ICP-AES, pH meter, etc. The density of the settled slurry layer tended to increase depending on the calcium concentration in the raw water. The bubble injection test was conducted in order to investigate the bubble retention/release behavior in the simulated carbonate slurry layer. The simulated carbonate slurry with high settling density, which was generated by high calcium concentration solution was revealed to retain the injected bubbles. Since the ratio of concentration calcium and magnesium during the carbonate slurry generation is assumed to affect the retention of bubbles in the slurry layer, the information on the composition of raw water is one of important factor for overflow of HICs.

Journal Articles

Restraint effect of coexisting nitrite ion in simulated high level liquid waste on releasing volatile ruthenium under boiling condition

Yoshida, Ryoichiro; Amano, Yuki; Yoshida, Naoki; Abe, Hitoshi

Journal of Nuclear Science and Technology, 58(2), p.145 - 150, 2021/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the "evaporation and dryness due to the loss of cooling functions" which is one of the severe accidents at reprocessing plants in Japan, ruthenium (Ru) is possible to be released much more than other elements to the environment. This cause is considered that the volatile Ru compound can be released from high level liquid waste (HLLW) as gaseous compound in adding to the release by entrainment. It was expected that the release of the volatile Ru compound from the HLLW may be able to be restrained by coexisting nitrite ion because of its reduction power. To confirm the effect of nitrite ion on the release behavior of the volatile Ru compound, four experiments of heating the simulated HLLW (SHLLW) with setting the concentration of nitrite ion in the SHLLW as a parameter ware carried out. As a result, the release of the volatile Ru compound was seemed to be restrained by adding nitrite sodium as a source of nitrite ion under certain boiling condition. This result may contribute to improve source term analysis in the evaporation and dryness due to the loss of cooling functions.

Journal Articles

Highly sensitive detection of sodium in aqueous solutions using laser-induced breakdown spectroscopy with liquid sheet jets

Nakanishi, Ryuzo; Oba, Hironori; Saeki, Morihisa; Wakaida, Ikuo; Tanabe, Rie*; Ito, Yoshiro*

Optics Express (Internet), 29(4), p.5205 - 5212, 2021/02

 Times Cited Count:0 Percentile:0(Optics)

Laser-induced breakdown spectroscopy (LIBS) combined with liquid jets was applied to the detection of trace sodium (Na) in aqueous solutions. The sensitivities of two types of liquid jets were compared: a liquid cylindrical jet with a diameter of 500 $$mu$$m and a liquid sheet jet with a thickness of 20 $$mu$$m. Compared with the cylindrical jet, the liquid sheet jet effectively reduced the splash from the laser-irradiated surface and produced long-lived luminous plasma. The limit of detection (LOD) of Na was determined to be 0.57 $$mu$$g/L for the sheet jet and 10.5 $$mu$$g/L for the cylindrical jet. The LOD obtained for the sheet jet was comparable to those obtained for commercially available inductively coupled plasma emission spectrometers.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2020-037, 53 Pages, 2020/12

JAEA-Review-2020-037.pdf:3.46MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil" conducted in FY2019.

JAEA Reports

Review and evaluation on the surface area of vitrified products of high-level waste; Surface area increase factors due to fracturing and their bases for the performance assessment of geological disposal

Igarashi, Hiroshi

JAEA-Review 2020-006, 261 Pages, 2020/09

JAEA-Review-2020-006.pdf:4.42MB

A literature review was conducted on the increase in surface area of vitrified products of HLW due to the fracturing caused by cooling during glass pouring process and by mechanical impact, from the perspective of a parameter of the radionuclide release model in the performance assessment of geological disposal system studied overseas. The review was focused on the value of surface area increase factor set as a parameter in the model, the experimental work to evaluate an increase in surface area, and how the parameters on surface area were determined based on the experimental results. The surface area obtained from the experiments executed in Japan was also discussed in comparison with the overseas studies. On the basis of the investigation, the effects of various conditions on the surface area were studied, such as a diameter of vitrified product, cooling condition during and after the glass pouring, impact on vitrified products during their handling, environment after the closure of disposal facility, and others. The causes of fracturing are associated with the phenomena or events in the waste management process such as production, transport, storage, and disposal. The surface area increase factors set in the nuclide release model of the glass and their bases were reviewed. In addition, the measured values and the experimental methods for surface increase factors published so far were compared. Accordingly, the methods for measuring surface area as the bases were identified for these factors set in the models. The causes of fracturing and features of these factors were studied with respect to the relation with the waste management process. The results from the review and assessment can contribute to the expanding the knowledge for the conservative and realistic application of these factors to performance assessment, and to the developing and upgrading of safety case as a consequence.

Journal Articles

Observation of aerosol particle capturing behavior near gas-liquid interface

Uesawa, Shinichiro; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00539_1 - 19-00539_9, 2020/06

JAEA Reports

Survey of computational methods of cross sections for thermal neutron scattering by liquids

Ichihara, Akira

JAEA-Review 2019-046, 36 Pages, 2020/03

JAEA-Review-2019-046.pdf:1.55MB

Toward the revision of JENDL-4.0, we conducted a literature survey on how to compute the cross section of thermal neutrons scattered by a liquid. This report summarizes the computational methods for evaluating thermal neutron cross sections with molecular dynamics simulations. The cross section can be expressed with a function called as scattering law. For light and heavy water, the scattering law data instead of the cross sections have been provided in nuclear databases. In this report we review the formulations of the scattering laws. The scattering laws can be derived from both the intermediate scattering function and the space-time correlation function. Features of the derived scattering laws are briefly explained. It is shown that the scattering law data can be evaluated using a molecular dynamics simulation of the liquid that is the target of thermal neutrons.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2019-023, 33 Pages, 2020/01

JAEA-Review-2019-023.pdf:1.97MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the 'Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil'. After the accident of the Fukushima Daiichi Nuclear Power Station, radioactive cesium has been heterogeneously distributed in surface soil due to the existence of radioactive microparticles and clay minerals. Therefore, the selective removal of these microparticles will lead to the volume reduction of contaminated soil. The present study examines methods for selectively removing radioactive microparticles from soil. Also, in order to reduce the volume of contaminated soil, we search a possibility to practically apply the separation method that uses the difference in specific gravity of particles (heavy liquid separation method).

Journal Articles

Experimental study on local interfacial parameters in upward air-water bubbly flow in a vertical 6$$times$$6 rod bundle

Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 144, p.118696_1 - 118696_19, 2019/12

 Times Cited Count:4 Percentile:51.17(Thermodynamics)

Journal Articles

Experimental evaluation of wall shear stress in a double contraction nozzle using a water mock-up of a liquid Li target for an intense fusion neutron source

Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro

Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.

Journal Articles

A Noniterative mean-field QM/MM-type approach with a linear response approximation toward an efficient free-energy evaluation

Kido, Kentaro

Journal of Computational Chemistry, 40(24), p.2072 - 2085, 2019/09

 Times Cited Count:1 Percentile:10.07(Chemistry, Multidisciplinary)

JAEA Reports

SCHERN: Analysis program for chemical behavior of nitrogen oxide in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Hiyama, Mina*; Tamaki, Hitoshi; Yoshida, Kazuo

JAEA-Data/Code 2019-006, 17 Pages, 2019/07

JAEA-Data-Code-2019-006.pdf:1.84MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NOx) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects strongly to the transport behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NOx with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis program has been developed to simulate chemical reaction coupled with the thermo-hydraulic condition in the flow paths in the facility building.

Journal Articles

Study on analysis method for inert gas behavior in liquid metal flow with considering dissolution and entrainment at free surface

Matsushita, Kentaro; Ito, Kei*; Ezure, Toshiki; Tanaka, Masaaki

Dai-24-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 5 Pages, 2019/06

In the design study on a sodium-cooled fast reactor (SFR), a numerical simulation code named SYRENA has been developed in Japan Atomic Energy Agency to analyze the behavior of gas bubbles and/or dissolved gas in the primary coolant system. In the present study, the effect of the non-condensable gas entrainment at the free surface on the bubble and the dissolved gas behavior in the primary coolant system were investigated for a typical pool type reactor, and also effect of a dipped-plate (D/P) installed below the free surface in the reactor vessel to suppress the gas bubble entrainment into the primary coolant system was especially investigated. It was clarified that the D/P was influential to the non-condensable gas behavior and the molar flow rate of gas bubbles in the primary coolant system varies depending on the relationship between the gas entrainment rate at the free surface and the exchange flow rate through the D/P.

Journal Articles

Analysis of chemical behavior of nitrogen oxide formed by thermal decomposition of FP nitrates in accident of evaporation to dryness by boiling of reprocessed high-level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(2), p.69 - 80, 2019/06

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that nitrogen oxide affects strongly to the transport behavior of Ru. Chemical reactions of nitrogen oxide with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis method has been developed with coupling two types of computer codes to simulate not only thermo-hydraulic behavior but also chemical reactions in the flow paths of carrier gases. A simulation study has been also carried out with a typical facility building.

Journal Articles

Observation of aerosol particle behavior near gas-liquid interface

Uesawa, Shinichiro; Miyahara, Naoya; Horiguchi, Naoki; Yoshida, Hiroyuki; Osaka, Masahiko

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Journal Articles

Parametric analysis of bubble and dissolved gas behavior in primary coolant system of sodium-cooled fast reactors

Matsushita, Kentaro; Ito, Kei*; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

A numerical simulation code named SYRENA has been developed in JAEA to analyze the behavior of entrained bubbles and dissolved gas in the primary coolant of sodium-cooled fast reactor (SFR). In the present study, a flow network model of SYRENA to a hypothetical pool type reactor was developed and the non-condensable gas behavior was investigated through the comparison with that in the loop type reactor. The effect of the dipped-plate (D/P) tentatively introduced into the pool-type reactor on the gas behavior was investigated through the parametric analyses about the sodium exchange flow rate through the D/P and the gas entrainment rate at the free surface. It was suggested that the increase in the exchange flow rate through the D/P doesn't always work to decrease the bubble volume in the primary coolant system.

Journal Articles

Spectrochemistry of technetium by liquid electrode plasma optical emission spectrometry and its applicability of quantification for highly active liquid waste

Yamamoto, Masahiko; Do, V. K.; Taguchi, Shigeo; Kuno, Takehiko; Takamura, Yuzuru*

Spectrochimica Acta, Part B, 155, p.134 - 140, 2019/05

 Times Cited Count:4 Percentile:59.11(Spectroscopy)

The emission spectra of technetium (Tc) by liquid electrode plasma optical emission spectrometry have been investigated in this study. From the spectra, 52 emission peaks of Tc were observed in the 250-500 nm wavelength range. All peaks were assigned to the neutral state or singly ionized state. The relative intensities of these peaks were similar to those excited by an electric spark. The strongest intensity peaks were found at 254.3 nm, 261.0 nm, and 264.7 nm. Spectral interferences of coexisting elements in highly active liquid waste of reprocessing stream on those three strongest peaks were investigated using simulated sample. No spectral interferences were observed around the 264.7 nm Tc peak. Therefore, analytical performance using 264.7 nm peak was evaluated. The detection limit, estimated on standard and blank samples in 0.4 M nitric acid, was 1.9 mg/L. The relative standard deviation of Tc standard sample (12.0 mg/L) was 3.8% (N = 5, 1$$sigma$$).

315 (Records 1-20 displayed on this page)