Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Asai, Masato; Kamada, Hiroki*; Shigekawa, Yudai*; Tsukada, Kazuaki; Sato, Tetsuya; Toyoshima, Atsushi; Mitsukai, Akina; Nagame, Yuichiro; Nishio, Katsuhisa; Hirose, Kentaro; et al.
no journal, ,
To clarify the fission mechanism of mass-symmetric spontaneous fissions observed around the neutron-rich Fm region, we have measured kinetic energies and mass distribution of spontaneous-fission fragments in this nuclear region precisely. The experiment was performed at the JAEA tandem accelerator facility using an on-line isotope separator (ISOL). The mass-separated Lr nuclei were implanted into thin foil, and two fragments of their spontaneous fission were coincidently measured with two Si detectors. The spontaneous fission of
Lr was found to show a narrow symmetric mass distribution. On the other hand, their total kinetic energy TKE was found to be low, which is apparently different from the high-TKE symmetric fissions observed in the Fm isotopes. This indicates that the fission mechanisms of these two symmetric fissions are different.
Asai, Masato; Tsukada, Kazuaki; Hirose, Kentaro; Toyoshima, Atsushi; Tomitsuka, Tomohiro; Chiera, N. M.; Ito, Yuta; Makii, Hiroyuki; Nagame, Yuichiro; Nishio, Katsuhisa; et al.
no journal, ,
Spontaneous fissions of Fm,
Fm, and
Lr have been measured using an
Es target at the JAEA Tandem Accelerator Facility. These three nuclei show different fission properties: the asymmetric fission, the high total-kinetic-energy (TKE) symmetric fission, and the low TKE symmetric fission, and the mechanisms of these three fissions should be very different. It is of great interest to elucidate how these differences occur. We have produced
Fm in multinucleon-transfer reactions with a
Es target and
O projectiles, and produced
Lr in the
Cm(
N,4n) fusion-evaporation reaction. The reaction products were mass-separated with a gas-jet-coupled on-line isotope separator, and were delivered into a rotating wheel alpha- and fission-fragment detection system. By comparing the mass and TKE distributions deduced from the present experimental data, we will discuss the differences in fission mechanism among
Fm,
Fm, and
Lr.
Asai, Masato; Tsukada, Kazuaki; Hirose, Kentaro; Toyoshima, Atsushi*; Tomitsuka, Tomohiro*; Chiera, N. M.*; Ito, Yuta; Makii, Hiroyuki; Nagame, Yuichiro*; Nishio, Katsuhisa; et al.
no journal, ,
Neutron-rich fermium isotopes Fm and
Fm and lawrencium isotope
Lr were produced in the multinucleon transfer reaction on
Es target with heavy-ion beam and in the heavy-ion fusion reaction on
Cm target with
N beam, respectively. Reaction products were mass-separated with an on-line isotope separator (ISOL), and spontaneous fission (SF) of these isotopes were measured. It was found that the mass distribution of the SF of
Fm was asymmetric, while that of
Fm was sharp symmetric, which confirmed the previous experimental results. On the other hand, the SF of
Lr seemed to contain both symmetric and asymmetric mass distributions. On the basis of the present results of the mass and total kinetic energy distributions, we discussed the mechanism of fission for these isotopes.