検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Uncertainty analysis of dynamic PRA using nested Monte Carlo simulations and multi-fidelity models

Zheng, X.; 玉置 等史; 高原 省五; 杉山 智之; 丸山 結

Proceedings of Probabilistic Safety Assessment and Management (PSAM16) (Internet), 10 Pages, 2022/09

Uncertainty gives rise to the risk. For nuclear power plants, probabilistic risk assessment (PRA) systematically concludes what people know to estimate the uncertainty in the form of, for example, risk triplet. Capable of developing a definite risk profile for decision-making under uncertainty, dynamic PRA widely applies explicit modeling techniques such as simulation to scenario generation as well as the estimation of likelihood/probability and consequences. When quantifying risk, however, epistemic uncertainties exist in both PRA and dynamic PRA, as a result of the lack of knowledge and model simplification. The paper aims to propose a practical approach for the treatment of uncertainty associated with dynamic PRA. The main idea is to perform the uncertainty analysis by using a two-stage nested Monte Carlo method, and to alleviate the computational burden of the nested Monte Carlo simulation, multi-fidelity models are introduced to the dynamic PRA. Multi-fidelity models include a mechanistic severe accident code MELCOR2.2 and machine learning models. A simplified station blackout (SBO) scenario was chosen as an example to show practicability of the proposed approach. As a result, while successfully calculating the probability of large early release, the analysis is also capable to provide uncertainty information in the form probability distributions. The approach can be expected to clarify questions such as how reliable are results of dynamic PRA.

口頭

動的レベル2PRA手法の早期大規模放出頻度評価への適用に関する研究

Zheng, X.; 高原 省五; 玉置 等史; 杉山 智之; 丸山 結

no journal, , 

動的確率論的リスク評価(PRA)手法は、事故シーケンスの網羅性の向上や、事故影響の時間依存性のより明示的なモデリングを可能とする。動的PRA手法を用い、様々な事故シーケンスにおける放射性核種の環境中への放出開始時間を推定し、リスク指標として早期大規模放出頻度(LERF)を評価することにより、防災計画の策定や重要度評価プロセスの実施に際し有用な情報の提供を図る。

2 件中 1件目~2件目を表示
  • 1