Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 55

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

Journal Articles

Neutron capture cross sections of curium isotopes measured with ANNRI at J-PARC

Kawase, Shoichiro*; Kimura, Atsushi; Harada, Hideo; Iwamoto, Nobuyuki; Iwamoto, Osamu; Nakamura, Shoji; Segawa, Mariko; Toh, Yosuke

Journal of Nuclear Science and Technology, 58(7), p.764 - 786, 2021/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Upgrade history and present status of the general control system for the Materials and Life Science Experimental Facility at J-PARC

Sakai, Kenji; Oi, Motoki; Haga, Katsuhiro; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*

JPS Conference Proceedings (Internet), 33, p.011151_1 - 011151_6, 2021/03

For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF), GCS administers operation processes and interlocks of many instruments for various operation statuses. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of other facilities in J-PARC. Since the first beam injection in 2008, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015, in considering sustainable long-term operation and maintenance. In recent years, many instruments in GCS have replaced due to end of production and support of them. In this way, many modifications have been proceeded in the entire GCS after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan for the coming ten years. This report will mention upgrade history, present status and future agenda of GCS.

Journal Articles

Position-encoded automatic cell elevator for BL02, J-PARC MLF

Tominaga, Taiki*; Kobayashi, Makoto*; Yamada, Takeshi*; Matsuura, Masato*; Kawakita, Yukinobu; Kasai, Satoshi*

JPS Conference Proceedings (Internet), 33, p.011095_1 - 011095_5, 2021/03

A vertical movement type of sample changer for the neutron spectrometer BL02, J-PARC MLF was developed for our top-loading type cryostat. The sample changer, termed as "PEACE", can control reproducibility of the irradiated position using guides made of polyether ether ketone. The variation between the background scattering profiles of three sample positions was found to be less than plus minus 1.6%. This result is reasonable, considering the deviation of sample position of less than plus minus 0.3 mm from the vertical axis.

JAEA Reports

Assessment report on research and development activities in FY 2018; Activity "Research and development on J-PARC" (Interim report)

J-PARC Center

JAEA-Evaluation 2019-003, 52 Pages, 2019/06

JAEA-Evaluation-2019-003.pdf:6.61MB

Evaluation Committee of Research Activities for J-PARC for interim assessment of Japan Proton Accelerator Research Complex evaluated the management and research activities of J-PARC center on the explanatory documents and oral presentations during the period from April 2015 to December 2018. This report summarizes the results of the assessment by the Committee with the Committee report attached.

JAEA Reports

Progress of general control system for Materials and Life Science Experimental Facility at J-PARC

Sakai, Kenji; Oi, Motoki; Takada, Hiroshi; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*

JAEA-Technology 2018-011, 57 Pages, 2019/01

JAEA-Technology-2018-011.pdf:4.98MB

For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF). GCS administers operation processes and interlocks of many instruments. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of the accelerators and other facilities in J-PARC. Since the first beam injection, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015. In this way, many modifications have been proceeded in the entire GCS during a period of approximately ten years after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan. This report summarizes outline, structure, roles and functions of GCS in 2017.

Journal Articles

Shielding

Maekawa, Fujio

Hamon, 28(4), p.208 - 211, 2018/11

Adequate shielding of neutrons and associated $$gamma$$-rays is of importance from viewpoints of the radiation safety of researchers and good experimental data taking by reducing the background. This article introduces basics of neutron shielding, physics and suitable materials for neutron and $$gamma$$-ray shielding, and an example of conceptual shielding design for the 1-MW spallation neutron source of J-PARC MLF.

Journal Articles

Recovery of helium refrigerator performance for cryogenic hydrogen system at J-PARC MLF

Aso, Tomokazu; Teshigawara, Makoto; Hasegawa, Shoichi; Muto, Hideki; Aoyagi, Katsuhiro; Nomura, Kazutaka; Takada, Hiroshi

Journal of Physics; Conference Series, 1021(1), p.012085_1 - 012085_4, 2018/06

BB2016-1899.pdf:0.54MB

Journal Articles

Visualization technique with the energy-resolved neutron imaging system, RADEN

Kai, Tetsuya; Shinohara, Takenao; Hiroi, Kosuke; Su, Y.; Oikawa, Kenichi

Hihakai Kensa, 67(5), p.209 - 216, 2018/05

no abstracts in English

Journal Articles

Application of profile fitting method to neutron time-of-flight protein single crystal diffraction data collected at the iBIX

Yano, Naomine*; Yamada, Taro*; Hosoya, Takaaki*; Ohara, Takashi; Tanaka, Ichiro*; Kusaka, Katsuhiro*

Scientific Reports (Internet), 6, p.36628_1 - 36628_9, 2016/12

 Times Cited Count:10 Percentile:67.29(Multidisciplinary Sciences)

JAEA Reports

Optimization of the magnetic field environment in the polarization analysis system of BL22 "RADEN" at J-PARC/MLF (Contract research)

Hiroi, Kosuke; Shinohara, Takenao; Hayashida, Hirotoshi*; Su, Y.; Kai, Tetsuya; Oikawa, Kenichi

JAEA-Technology 2016-021, 14 Pages, 2016/10

JAEA-Technology-2016-021.pdf:16.4MB

Energy resolved neutron imaging techniques have been developed at BL22 "RADEN" installed in the Materials and Life Science Experimental Facility (MLF) of J-PARC. A polarized neutron imaging technique attracts much attention as a magnetic imaging method that enables to obtain a quantitative magnetic field distribution in an industrial product under driving state. At RADEN, a polarization analysis apparatus for polarized neutron imaging experiments has been prepared, but its performance was not fully achieved due to imperfectness of the field connection between devices. To improve the performance of polarization analysis system at RADEN, we performed magnetic field simulation of this system, and optimized the magnetic field environment by evaluating the magnetic field connection. After the optimization, we rearranged devices of the system, and confirmed that uniform polarization distribution could be obtained within 4$$times$$4 cm$$^{2}$$ field of view.

JAEA Reports

Measurement of high-energy neutron fluxes and spectra around the J-PARC mercury spallation neutron target using multi-foil activation method

Kasugai, Yoshimi; Harada, Masahide; Kai, Tetsuya; Oi, Motoki; Meigo, Shinichiro; Maekawa, Fujio

JAEA-Data/Code 2015-033, 28 Pages, 2016/03

JAEA-Data-Code-2015-033.pdf:1.78MB

The high-energy neutron fluxes and spectra around the mercury spallation neutron source at MLF of J-PARC were measured by the multi-foil activation method. The threshold energies of neutron reactions utilized in this experiment covered from 0.1 to 50 MeV. The foil irradiation was carried out on the first beam-run of MLF from May 30th to 31th, 2008. After the irradiation, the induced radioactivity of each foil was measured using an HPGe detector, and the neutron-induced reaction-rate distribution around the mercury target was determined. Using these data, the high-energy neutron fluxes and spectra were deduced with unfolding method in which the neutron spectra calculated with PHITS code were used as the initial-guess spectra. By comparison between the initial and the unfolded spectra, it was shown that most of the calculation results, which had been the basis of the neutronics design of the MLF target assembly, were consistent with the experimental data within $$pm$$30%.

Journal Articles

Progress of the general control system for the Materials and Life Science Experimental Facility in J-PARC

Sakai, Kenji; Oi, Motoki; Watanabe, Akihiko; Kai, Tetsuya; Kato, Yuko; Meigo, Shinichiro; Takada, Hiroshi

JAEA-Conf 2015-002, p.593 - 598, 2016/02

For safe and stable beam operation, a MLF general control system (GCS) consists of several subsystems such as an integral control, interlock, server, network, and timing distribution systems. Since the first beam injection in 2008, the GCS has operated stably without any serious troubles in comparison with upgrade of target devices for ramping up beam power and increment of user apparatuses year by year. In recent years, however, it has been improved significantly in view of sustainable long-term operation and maintenance. The monitor and operation system of the GCS has been upgraded by changing its framework software to improve potential flexibility in its maintenance. Its interlock system was also modified in accordance with the re-examination of the risk management system of J-PARC. This paper reports recent progress of the MLF-GCS.

Journal Articles

SENJU; A New time-of-flight single-crystal neutron diffractometer at J-PARC

Ohara, Takashi; Kiyanagi, Ryoji; Oikawa, Kenichi; Kaneko, Koji; Kawasaki, Takuro; Tamura, Itaru; Nakao, Akiko*; Hanashima, Takayasu*; Munakata, Koji*; Moyoshi, Taketo*; et al.

Journal of Applied Crystallography, 49(1), p.120 - 127, 2016/02

 Times Cited Count:33 Percentile:94.36(Chemistry, Multidisciplinary)

Journal Articles

Sample environment at the MLF

Aso, Tomokazu; Yamauchi, Yasuhiro; Kawamura, Seiko

Hamon, 25(4), p.283 - 287, 2015/11

Journal Articles

Upgrade of monitoring and operation systems for the MLF-GCS base on EPICS and CSS

Oi, Motoki; Sakai, Kenji; Watanabe, Akihiko; Akutsu, Atsushi; Meigo, Shinichiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 8, p.036007_1 - 036007_5, 2015/09

This paper reports on upgrading of the monitor and operation (MO) system for a general control system (GCS) of the Materials and Life science experimental Facility (MLF) at J-PARC. The MLF-GCS consists of programmable logic controllers (PLCs), operator interfaces (OPIs) for integral control and interlock systems, shared servers, and so on. It is controlling various components of the pulsed spallation neutron source such as a mercury target and hydrogen moderators. The MO system is used for monitoring, alarm notification and remote control from the MLF control room. The GCS has been working well as expected, but current MO system which consists of the OPIs and data servers based on iFix has some problems in view of sustainable maintenance because of its poor flexibility of supported OS and software version compatibility. To overcome the problems, we upgraded the MO system to be operated using the framework of EPICS, the OPI of Control System Studio (CSS) and the server software of Postgre SQL. This improves versatility of the MO system, enabling to run on various platforms such as Windows, Linux and Mac OS. At first, we made a prototype MO system, which processed 100 points of data and 5 operation screens and verified that the MO system functions correctly. Then we made full spec MO system which processes the data point of 7000 and operation screens of 130. It was operated in parallel with the current system to evaluate its performance with real data such as data transmission speed from PLCs, control functions from OPI, storage capability of servers and long-term reliability. As results, the new MO system achieved the communication speed of 2 Hz and its operability compatible to the current system. Now, we are operating and debugging it in comparison with the current system during the operating period as a preparation for the system replacement at the end of 2014.

Journal Articles

Journal Articles

Phase transitions and hydrogen bonding in deuterated calcium hydroxide; High-pressure and high-temperature neutron diffraction measurements

Iizuka, Riko*; Komatsu, Kazuki*; Kagi, Hiroyuki*; Nagai, Takaya*; Sano, Asami; Hattori, Takanori; Goto, Hirotada*; Yagi, Takehiko*

Journal of Solid State Chemistry, 218, p.95 - 102, 2014/10

 Times Cited Count:6 Percentile:34.03(Chemistry, Inorganic & Nuclear)

In situ neutron diffraction measurements combined with the pulsed neutron source at the Japan Proton Accelerator Research Complex (J-PARC) were conducted on high-pressure polymorphs of deuterated portlandite (Ca(OD)$$_{2}$$) using a Paris-Edinburgh cell and a multi-anvil press. The atomic positions including hydrogen for the unquenchable high-pressure phase at room temperature (phase II') were first clarified. The bent hydrogen bonds under high pressure were consistent with results from Raman spectroscopy. The structure of the high-pressure and high-temperature phase (Phase II) was concordant with that observed previously by another group for a recovered sample. The observations elucidate the phase transition mechanism among the polymorphs, which involves the sliding of CaO polyhedral layers, position modulations of Ca atoms, and recombination of Ca-O bonds accompanied by the reorientation of hydrogen to form more stable hydrogen bonds.

Journal Articles

A Preliminaly investigation on the satellite building of MLF; Beamline shielding analysis

Oikawa, Kenichi; Maekawa, Fujio; Tamura, Masaya; Harada, Masahide; Kato, Takashi; Ikeda, Yujiro; Niita, Koji*

LA-UR-06-3904, Vol.2, p.139 - 145, 2006/06

A preliminary investigation on a satellite building for a long-beamline instrument of MLF is now in progress. In order to estimate the total cost of the building, we started the shielding analysis of the beamline using MCNPX and PHITS, where the latest beamline design and the neutron spectrum have been adopted.

Oral presentation

6-year experiences of neutron imaging at NOBORU at J-PARC MLF

Oikawa, Kenichi; Kai, Tetsuya; Shinohara, Takenao; Harada, Masahide; Oi, Motoki; Sakai, Kenji; Maekawa, Fujio; Kiyanagi, Yoshiaki*

no journal, , 

Neutron imaging using a time-of-flight (TOF) method at spallation neutron source has very unique capability. Conventional neutron radiography, including computed tomography, can be carried out by use of camera type detector. In contrast, two dimensional counter with a time analyzer provides 3D data; x, y, and TOF which corresponds to the wavelength (energy) of neutrons. Since 2008, test experiments for TOF imaging has been started at NOBORU at J-PARC. TOF imaging applying resonance peak, Bragg edge, and polarized neutron have been carried out extensively. Our experiences of neutron imaging at NOBORU were fully applied to the novel imaging instrument at BL-22 of MLF now under construction.

55 (Records 1-20 displayed on this page)