Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ono, Tomio*; Subekti, M.*; Kudo, Kazuhiko*; Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Nabeshima, Kunihiko
Nihon Genshiryoku Gakkai Wabun Rombunshi, 4(2), p.115 - 126, 2005/06
Control-rod withdrawal tests simulating reactivity insertion are carried out in the HTTR to verify the inherent safety features of HTGRs. This paper describes pre-test analysis method using artificial neural networks to predict the changes of reactor power and reactivity. The network model applied in this study is based on recurrent neural networks. The inputs of the network are the changes of the central control rods position and other significant core parameters, and the outputs are the changes of reactor power and reactivity. Furthermore, Time Synchronizing Signal(TSS) is added to input to improve the modeling of time series data. The actual tests data, which were previously carried out in the HTTR, were used for learning the model of the plant dynamics. After the learning, the network can predict the changes of reactor power and reactivity in the following tests.
; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki
JAERI-M 94-074, 16 Pages, 1994/05
no abstracts in English