Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Review of research on advanced computational science in FY2019

Center for Computational Science & e-Systems

JAEA-Evaluation 2020-002, 37 Pages, 2020/12

JAEA-Evaluation-2020-002.pdf:1.59MB

Research on advanced computational science for nuclear applications, based on "the plan to achieve the mid and long term goal of the Japan Atomic Energy Agency", has been performed at Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of outside experts and authorities which does research evaluation and advice for the assistance of the future research and development. This report summarizes the results of the R&D performed at CCSE in FY2019 (April 1st, 2019 - March 31st, 2020) and the evaluation by the committee on them.

Journal Articles

Evaluation of melting and solidification processes by laser irradiations using a computational science simulation code SPLICE

Muramatsu, Toshiharu

Dai-89-Kai Reza Kako Gakkai Koen Rombunshu, p.115 - 119, 2018/05

no abstracts in English

Journal Articles

Simulation of alumina and corium steam explosion experiments with JASMINE v.3

Moriyama, Kiyofumi; Nakamura, Hideo; Maruyama, Yu

Proceedings of 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-6) (CD-ROM), 18 Pages, 2004/10

A steam explosion simulation code JASMINE is under development at JAERI for the assessment of steam explosion impacts on the integrity of containment vessel during severe accidents in light water reactors. Selected alumina and corium steam explosion experiments, KROTOS-44, 42, 37 and FARO-L33 were simulated with JASMINE code. The experimentally observed difference of the steam explosion intensity with the two materials, alumina and corium, was reproduced in the simulations without changing the model parameters related to the fine fragmentation process, but based on the difference in the premixing behavior predicted by the simulations. The simulation of corium experiments showed more fraction of the melt droplets frozen during premixing, as well as more void fraction, and those two points were likely to be the primary reasons of weak interactions in corium experiments.

JAEA Reports

Proceedings of the Workshop on Molten Salts Technology and Computer Simulation

Hayashi, Hirokazu; Minato, Kazuo

JAERI-Conf 2001-016, 181 Pages, 2001/12

JAERI-Conf-2001-016.pdf:11.72MB

Applications of molten salts technology to separations and syntheses of materials have been studied eagerly, which would develop new fields of materials science. Research Group for Actinides Science, Department of Materials Science, Japan Atomic Energy Research Institute (JAERI), together with Reprocessing and Recycle Technology Division, Atomic Energy Society of Japan, organized the Workshop on Molten Salts Technology and Computer Simulation at Tokai Research Establishment, JAERI on September 18, 2001. In the workshop eleven lectures were made and lively discussions were there on the bases and applications of the molten salts technology that covered the structure and basic properties of molten salts, the pyrochemical reprocessing technology and the relevant computer simulation.

JAEA Reports

Atmospheric dispersion simulations of volcanic gas from Miyake Island by SPEEDI

Nagai, Haruyasu; Furuno, Akiko; Terada, Hiroaki; Umeyama, Nobuaki; Yamazawa, Hiromi; Chino, Masamichi

JAERI-Research 2001-012, 28 Pages, 2001/03

JAERI-Research-2001-012.pdf:1.77MB

Japan Atomic Energy Research Institute is advancing the study for prediction of material circulation in the environment to cope with environmental pollution, based on SPEEDI (System for Prediction of Environmental Emergency Dose Information) and WSPEEDI (Worldwide version of SPEEDI), which are originally developed aiming at real-time prediction of atmospheric dispersion of radioactive substances accidentally released from nuclear facility. As a part of this study, dispersion simulation of volcanic gas erupted from Miyake Island is put into practice. After the stench incident at the west Kanto District on 28 August 2000 caused by volcanic gas from Miyake Island, simulations dealing with atmospheric dispersion of volcanic gas from Miyake Island have been carried out. This report describes the details of these studies.

Journal Articles

Three-dimensional numerical simulation of strong evaporation and condensation for plasma-facing materials

Kunugi, Tomoaki; *

16th IEEE/NPSS Symp. on Fusion Engineering (SOFE '95), 2, p.1107 - 1110, 1995/00

no abstracts in English

Journal Articles

Numerical simulation of strong evaporation and condensation for plasma-facing materials

Kunugi, Tomoaki; *

Fusion Engineering and Design, 28, p.162 - 169, 1995/00

 Times Cited Count:1 Percentile:80.99

no abstracts in English

Journal Articles

Numerical simulation of heat transfer and fluid flow of an impinging round jet of plasma into confinded walls

*; Kunugi, Tomoaki; *

Therm. Sci. Eng., 3(4), p.27 - 33, 1995/00

no abstracts in English

Journal Articles

International workshop on the near-real-time accountancy measure

; D.Gupta*

Nuclear Safeguards Technology,Vol.2, p.513 - 539, 1983/00

no abstracts in English

JAEA Reports

Conditions of Boundary Plasmas with Self-sputtering of Wall Materials

Sengoku, Seio; ; *; ;

JAERI-M 7918, 62 Pages, 1978/10

JAERI-M-7918.pdf:1.83MB

no abstracts in English

12 (Records 1-12 displayed on this page)
  • 1