Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 45

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Technical note for the cavitation damage inspection for interior surface of the mercury target vessel, 1; Development of specimen cutting machine for remote handling

Naoe, Takashi; Kinoshita, Hidetaka; Wakui, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro

JAEA-Technology 2022-018, 43 Pages, 2022/08

JAEA-Technology-2022-018.pdf:7.84MB

In the liquid mercury target system for the pulsed spallation neutron source of Materials and Life science experimental Facility (MLF) at the Japan in the Japan Proton Accelerator Research Complex (J-PARC), cavitation that is generated by the high-energy proton beam-induced pressure waves, resulting severe erosion damage on the interior surface of the mercury target vessel. The erosion damage is increased with increasing the proton beam power, and has the possibility to cause the leakage of mercury by the penetrated damage and/or the fatigue failure originated from erosion pits during operation. To achieve the long term stable operation under high-power proton beam, the mitigation technologies for cavitation erosion consisting of surface modification on the vessel interior surface, helium gas microbubble injection, double-walled beam window structure has been applied. The damage on interior surface of the vessel is never observed during the beam operation. Therefore, after the target operation term ends, we have cut out specimen from the target nose of the target vessel to inspect damaged surface in detail for verification of the cavitation damage mitigation technologies and lifetime estimation. We have developed the techniques of specimen cutting out by remote handling under high-radiation environment. Cutting method was gradually updated based on experience in actual cutting for the used target vessel. In this report, techniques of specimen cutting out for the beam entrance portion of the target vessel in high-radiation environment and overview of the results of specimen cutting from actual target vessels are described.

JAEA Reports

Current status and upgrading strategies of J-PARC Materials and Life Science Experimental Facility (MLF) and related components

Teshigawara, Makoto; Nakamura, Mitsutaka; Kinsho, Michikazu; Soyama, Kazuhiko

JAEA-Technology 2021-022, 208 Pages, 2022/02

JAEA-Technology-2021-022.pdf:14.28MB

The Materials and Life science experimental Facility (MLF) is an accelerator driven pulsed spallation neutron and muon source with a 1 MW proton beam. The construction began in 2004, and we started beam operation in 2008. Although problems such as exudation of cooling water from the target container have occurred, as of April 2021, the proton beam power has reached up to 700 kW gradually, and stable operation is being performed. In recent years, the operation experience of the rated 1 MW has been steadily accumulated. Several issues such as the durability of the target container have been revealed according to the increase in the operation time. Aiming at making a further improvement of MLF, we summarized the current status of achievements for the design values, such as accelerator technology (LINAC and RCS), neutron and muon source technology, beam transportation of these particles, detection technology, and neutron and muon instruments. Based on the analysis of the current status, we tried to extract improvement points for upgrade of MLF. Through these works, we will raise new proposals that promote the upgrade of MLF, attracting young people. We would like to lead to the further success of researchers and engineers who will lead the next generation.

Journal Articles

New design of high power mercury target vessel of J-PARC

Wakui, Takashi; Wakai, Eiichi; Kogawa, Hiroyuki; Naoe, Takashi; Hanano, Kohei*; Haga, Katsuhiro; Shimada, Tsubasa*; Kanomata, Kenichi*

Materials Science Forum, 1024, p.145 - 150, 2021/03

To realize a high beam power operation at the J-PARC, a mercury target vessel covered with water shroud was developed. In the first step, to realize an operation at 500 kW, the basic structure of the initial design was followed and the connection method between the mercury vessel and the water shroud was changed. Additionally, the operation at a beam power of 500 kW was realized in approximately eight months. In the second step, to realize the operation at 1 MW, the new structure in which only rear ends of vessels were connected was investigated. Cooling of the mercury vessel is used to reduce thermal stress and thick vessels of the water shroud are used to increase stiffness for the internal pressure; therefore, it was adopted. The stress in each vessel was lower than the allowable stress based on the pressure vessel code criteria prescribed in the Japan Industrial Standard, and confirmation was obtained that the operation with a beam power of 1 MW could be conducted.

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:3 Percentile:35.09(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

Journal Articles

Recent status of the pulsed spallation neutron source at J-PARC

Takada, Hiroshi; Haga, Katsuhiro

JPS Conference Proceedings (Internet), 28, p.081003_1 - 081003_7, 2020/02

At the Japan Proton Accelerator Research Complex (J-PARC), the pulsed spallation neutron source has been in operation with a redesigned mercury target vessel from October 2017 to July 2018, during which the operational beam power was restored to 500 kW and the operation with a 1-MW equivalent beam was demonstrated for one hour. The target vessel includes a gas-micro-bubbles injector and a 2-mm-wide narrow mercury flow channel at the front end as measures to suppress the cavitation damage. After the operating period, it was observed that the cavitation damage at the 3-mm-thick front end of the target vessel could be suppressed less than 17.5 $$mu$$m.

Journal Articles

Optimum temperature for HIP bonding invar alloy and stainless steel

Wakui, Takashi; Ishii, Hideaki*; Naoe, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Wakai, Eiichi; Takada, Hiroshi; Futakawa, Masatoshi

Materials Transactions, 60(6), p.1026 - 1033, 2019/06

 Times Cited Count:3 Percentile:17.35(Materials Science, Multidisciplinary)

The mercury target has large size as 1.3$$times$$1.3$$times$$2.5 m$$^{3}$$. In view of reducing the amount of wastes, we studied the structure so that the fore part could be separated. The flange is required to have high seal performance less than 1$$times$$10$$^{-6}$$ Pa m$$^{3}$$/s. Invar with low thermal expansion is a candidate. Due to its low stiffness, however, the flange may deform when it is fastened by bolts. Practically invar is reinforced with stainless steel where all interface between them has to be bonded completely with the HIP bonding. In this study, we made specimens at four temperatures and conducted tensile tests. The specimen bonded at 973 K had little diffusion layer, and so fractured at the interface. The tensile strength reduced with increasing the temperature, and the reduced amount was about 10% at 1473 K. The analyzed residual stresses near the interface increased by 50% at maximum. Then, we concluded that the optimum temperature was 1173 K.

Journal Articles

Recent studies for structural integrity evaluation and defect inspection of J-PARC spallation neutron source target vessel

Wakui, Takashi; Wakai, Eiichi; Naoe, Takashi; Shintaku, Yohei*; Li, T.*; Murakami, Kazuya*; Kanomata, Kenichi*; Kogawa, Hiroyuki; Haga, Katsuhiro; Takada, Hiroshi; et al.

Journal of Nuclear Materials, 506, p.3 - 11, 2018/08

 Times Cited Count:3 Percentile:29.51(Materials Science, Multidisciplinary)

The mercury target vessel is designed as multi-walled structure with thin wall (min. 3 mm), and assembled by welding. In order to estimate the structural integrity of the vessel, it is important to measure the defects in welding accurately. For nondestructive tests of the welding, radiographic testing is applicable but it is difficult to detect for some defect shapes. Therefore it is effective to do ultrasonic testing together with it. Because ultrasonic methods prescribed in JIS inspect on the plate with more than 6 mm in thickness, these methods couldn't be applied as the inspection on the vessel with thin walls. In order to develop effective method, we carried out measurements using some testing method on samples with small defect whose size is specified. In the case of the latest phased array method, measured value agreed with actual size. It was found that this method was applicable to detect defects in the thin-walled structure for which accurate inspection was difficult so far.

Journal Articles

Current status of the high intensity pulsed spallation neutron source at J-PARC

Takada, Hiroshi

Plasma and Fusion Research (Internet), 13(Sp.1), p.2505013_1 - 2505013_8, 2018/03

The pulsed spallation neutron source of Japan Proton Accelerator Research Complex (J-PARC) has been supplying users with high intensity and sharp pulse cold neutrons using the moderators with following distinctive features; (1) 100% para-hydrogen for increasing pulse peak intensity with decreasing pulse tail, (2) cylindrical shape with 14 cm diam.$$times$$12 cm long for providing high intensity neutrons to wide neutron extraction angles of 50.8$$^{circ}$$, (3) neutron absorber made from Ag-In-Cd alloy to make pulse width narrower and pulse tails lower. Actually, it was measured at a low power operation that high neutron intensity of 4.5$$times$$10$$^{12}$$ n/cm$$^{2}$$/s/sr could be emitted from the coupled moderator surface for 1-MW operation, and a superior resolution of $$Delta$$d/d = 0.035% was achieved at a beamline (BL8) with a poisoned moderator, where d is the d-spacing of reflection. Towards the goal to achieve the target operation at 1-MW for 5000 h in a year, technical developments to mitigate cavitation damages on the target vessel with injecting gas micro-bubbles into mercury target and design improvement of target vessel structure to reducing welds and bolt connections as much as possible are under way.

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 1; Pulsed spallation neutron source

Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.

Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09

At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.

Journal Articles

Progress of target system operation at the pulsed spallation neutron source in J-PARC

Takada, Hiroshi; Naoe, Takashi; Kai, Tetsuya; Kogawa, Hiroyuki; Haga, Katsuhiro

Proceedings of 12th International Topical Meeting on Nuclear Applications of Accelerators (AccApp '15), p.297 - 304, 2016/00

In J-PARC, we have continuously been making efforts to operate a mercury target of a pulsed spallation neutron source with rated power of 1-MW. One of technical progresses is to mitigate cavitation damages at the target vessel front induced by the 3-GeV proton beam injection at 25 Hz. We have improved the performance of a gas micro-bubbles injection into the mercury target, resulting that no significant cavitation damages was observed on the inner surface of target vessel after operation for 2050 MWh with the 300-kW proton beam. Another progress is to suppress the release of gaseous radioactive isotopes, especially tritium, during the target vessel replacement. We have introduced a procedure to evacuate the target system by an off-gas processing apparatus when it is opened during the replacement operation, achieving to suppress the tritium release through the stack. For example, the amount of released tritium was 12.5 GBq, only 5.4% of the estimated amount, after the 2050 MWh operation. After these progresses, the operating beam power for the pulsed spallation neutron source was ramped up to 500-kW in April, 2015.

Journal Articles

Pitting damage evaluation by liquid/solid interface impact analysis

Naoe, Takashi; Futakawa, Masatoshi; Oi, Toshiyuki; Ishikura, Shuichi*; Ikeda, Yujiro

Zairyo, 54(11), p.1184 - 1190, 2005/11

High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material science and life facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding in the mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electro Magnetic IMpact Testing Machine, MIMTM, was developed to reproduce the localized impact erosion damage and evaluate the damage formation. Additionally, droplet impact analysis was carried out to investigate the correlation between isolate pit profile and micro-jet velocity. We confirmed that value of depth/radius was able to estimate micro jet-velocity. And the velocity at 560W in MIMTM was estimated to be 225$$sim$$325 m/s. Furthermore, surface-hardening treatments were inhibited pit formation in plastic deformation.

Journal Articles

Micro-impact damage caused by mercury bubble collapse

Futakawa, Masatoshi; Naoe, Takashi*; Kogawa, Hiroyuki; Date, Hidefumi*; Ikeda, Yujiro

JSME International Journal, Series A, 48(4), p.234 - 239, 2005/10

Mercury target will be installed at the material science and life facility in J-PARC, which will promote innovative science. The mercury target will be subjected to the pressure wave caused by proton bombarding in the mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of target. An electromagnetic impact testing machine, MIMTM, was developed to reproduce the localized impact erosion damage and evaluate the damage formation. Additionally, droplet impact analyses were carried out to investigate the correlation between isolate pit profile and micro-jet velocity. We confirmed that the value of depth/radius was applicable to estimate micro-jet velocity, and the velocity at 560 W in MIMTM equivalent to 1MW proton beam injection was 300 m/s approximately.

Journal Articles

Erosion damage evaluation using acoustic vibration induced by micro-bubble collapse

Naoe, Takashi*; Futakawa, Masatoshi; Koyama, Tomofumi*; Kogawa, Hiroyuki; Ikeda, Yujiro

Jikken Rikigaku, 5(3), p.280 - 285, 2005/09

no abstracts in English

Journal Articles

Pitting damage by pressure waves in a mercury target

Futakawa, Masatoshi; Naoe, Takashi; Tsai, C.-C.*; Kogawa, Hiroyuki; Ishikura, Shuichi*; Ikeda, Yujiro; Soyama, Hitoshi*; Date, Hidefumi*

Journal of Nuclear Materials, 343(1-3), p.70 - 80, 2005/08

 Times Cited Count:57 Percentile:95.54(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Improved cavitation resistance of structural materials in pulsed liquid metal targets by surface hardening

Koppitz, T.*; Jung, P.*; M$"u$ller, G.*; Weisenburger, A.*; Futakawa, Masatoshi; Ikeda, Yujiro

Journal of Nuclear Materials, 343(1-3), p.92 - 100, 2005/08

 Times Cited Count:7 Percentile:44.75(Materials Science, Multidisciplinary)

Cavitation damage of structural materials due to pressure waves is expected to be one of the majior life-time limiting factors in high power liquid metal spallation targets under pulsed operation. Two methods are developed for the European Spallation Source (ESS) to mitigate this damage: Introduction of gas bubbles to surpress the pressure pulse and surface-hardening of structural materials. Surface-hardening of four 8-13%Cr martenstic steels was examined by thermal treatment with pulsed or scanned electron- and laser-beams as well as by nitriding in plasma. A specimens of the 12%Cr steel were tested in liquid mercury under pulsed proton irradiation, and under mechanical pulsed-loading. Surface damage was analysed by optical, confocal-laser, or scanning-electron microscopy, showing in both tests much better resistance of the hardened material compared to standard condition.

JAEA Reports

Failure probability analysis on mercury target vessel

Ishikura, Shuichi*; Shiga, Akio*; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

JAERI-Tech 2005-026, 65 Pages, 2005/03

JAERI-Tech-2005-026.pdf:2.86MB

Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As results, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10$$^{-11}$$ in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel to detect mercury-leakage sensors.

Journal Articles

1-MW pulse Spallation Neutron Source(JSNS) of J-PARC

Ikeda, Yujiro

Neutron News, 16(1), p.20 - 24, 2005/01

This article gives an overview of the 1-MW spallation neutron source (JSNS) to be constructed as the neutorn user facility under the J-PARC project. The most updated design status is described with emphasis of the key concepts adopted in target, moderator, reflector, shielding, etc. A critical technical issue on the pitting event inthe mercury target is also highlighted because of its serious impact on the target lifetime estimation.

Journal Articles

Damage diagnostic of localized impact erosion by measuring acoustic vibration

Futakawa, Masatoshi; Naoe, Takashi*; Kogawa, Hiroyuki; Ikeda, Yujiro

Journal of Nuclear Science and Technology, 41(11), p.1059 - 1064, 2004/11

 Times Cited Count:12 Percentile:61.35(Nuclear Science & Technology)

High power spallation targets for neutron sources are developing in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic Impact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between damage and acoustic vibration. It was confirmed that the acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity.

Journal Articles

Estimation of incubation time of cavitation erosion for various cavitating conditions

Soyama, Hitoshi*; Futakawa, Masatoshi

Tribology Letters, 17(1), p.27 - 30, 2004/07

 Times Cited Count:20 Percentile:58.50(Engineering, Chemical)

Estimation have been made, resulting in a general method for the prediction of the incubation time for cavitation erosion using various cavitating conditions and materials. From a single erosion test, the incubation time can be estimated for various conditions and materials by plotting the mass loss as a function of exposure time to cavitation on a log-log scale.

JAEA Reports

Technical report on the structural integrity and the lifetime evaluation for the mercury target vessel

Ishikura, Shuichi*; Futakawa, Masatoshi; Kogawa, Hiroyuki; Meigo, Shinichiro; Maekawa, Fujio; Harada, Masahide; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

JAERI-Tech 2004-028, 123 Pages, 2004/03

JAERI-Tech-2004-028.pdf:9.55MB

This report describes the structural design concept applied to the mercury target vessel used for the spallation neutron source installed in the material and life science experiment facility of J-PARC (Japan Proton Accelerator Complex), and the results evaluated on the basis of the concept. The features of the design concept are as follows: (1) The target vessel design is followed to "Law concerning Prevention from Radiation Hazards due to Radio-Isotopes". That is because (i) there is not the possibility in the target of the RIA (Reactivity Initiated Accident) generally considered in the nuclear power reactors, and (ii) the target vessel is not a permanent structure. (2) Therefore, the Class 1 Vessel of the JIS B-8270 [design code for pressure vessel] that is equivalent to a standard for nuclear power structural design is applicable as a design code for the target to sufficiently keep the safety of target system. The stresses for the design were evaluated using the linear elastic analysis based on the infinitesimal strain theory in order to confirm the safe and rational design.

45 (Records 1-20 displayed on this page)