Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 51

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Tree cutting approach for domain partitioning on forest-of-octrees-based block-structured static adaptive mesh refinement with lattice Boltzmann method

Hasegawa, Yuta; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro; Onodera, Naoyuki

Parallel Computing, 108, p.102851_1 - 102851_12, 2021/12

 Times Cited Count:0 Percentile:0.01(Computer Science, Theory & Methods)

The aerodynamics simulation code based on the lattice Boltzmann method (LBM) using forest-of-octrees-based block-structured local mesh refinement (LMR) was implemented, and its performance was evaluated on GPU-based supercomputers. We found that the conventional Space-Filling-Curve-based (SFC) domain partitioning algorithm results in costly halo communication in our aerodynamics simulations. Our new tree cutting approach improved the locality and the topology of the partitioned sub-domains and reduced the communication cost to one-third or one-fourth of the original SFC approach. In the strong scaling test, the code achieved maximum $$times1.82$$ speedup at the performance of 2207 MLUPS (mega- lattice update per second) on 128 GPUs. In the weak scaling test, the code achieved 9620 MLUPS at 128 GPUs with 4.473 billion grid points, while the parallel efficiency was 93.4% from 8 to 128 GPUs.

Journal Articles

AMR-Net: Convolutional neural networks for multi-resolution steady flow prediction

Asahi, Yuichi; Hatayama, Sora*; Shimokawabe, Takashi*; Onodera, Naoyuki; Hasegawa, Yuta; Idomura, Yasuhiro

Proceedings of 2021 IEEE International Conference on Cluster Computing (IEEE Cluster 2021) (Internet), p.686 - 691, 2021/10

 Times Cited Count:0 Percentile:0.01

We develop a convolutional neural network model to predict the multi-resolution steady flow. Based on the state-of-the-art image-to-image translation model pix2pixHD, our model can predict the high resolution flow field from the set of patched signed distance functions. By patching the high resolution data, the memory requirements in our model is suppressed compared to pix2pixHD.

Journal Articles

Fast in-situ mesh generation using Orb-SLAM2 and OpenMVS

Wright, T.*; Hanari, Toshihide; Kawabata, Kuniaki; Lennox, B.*

Proceedings of 17th International Conference on Ubiquitous Robots (UR 2020) (Internet), p.315 - 321, 2020/00

Journal Articles

PARaDIM; A PHITS-based Monte Carlo tool for internal dosimetry with tetrahedral mesh computational phantoms

Carter, L. M.*; Crawford, T. M.*; Sato, Tatsuhiko; Furuta, Takuya; Choi, C.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*; Zanzonico, P. B.*; Lewis, J. S.*

Journal of Nuclear Medicine, 60(12), p.1802 - 1811, 2019/12

 Times Cited Count:12 Percentile:77.26(Radiology, Nuclear Medicine & Medical Imaging)

Voxel human phantoms have been used for internal dose assessment. More anatomically accurate representation become possible for skins or layer tissues owing to recent developments of advanced polygonal mesh-type phantoms and thus internal dose assessment using those advanced phantoms are desired. However, the Monte Carlo transport calculation by implementing those phantoms require an advanced knowledge for the Monte Carlo transport codes and it is only limited to experts. We therefore developed a tool, PARaDIM, which enables users to conduct internal dose calculation with PHITS easily by themselves. With this tool, a user can select tetrahedral-mesh phantoms, set radionuclides in organs, and execute radiation transport calculation with PHITS. Several test cases of internal dosimetry calculations were presented and usefulness of this tool was demonstrated.

Journal Articles

Computation speeds and memory requirements of mesh-type ICRP reference computational phantoms in Geant4, MCNP6, and PHITS

Yeom, Y. S.*; Han, M. C.*; Choi, C.*; Han, H.*; Shin, B.*; Furuta, Takuya; Kim, C. H.*

Health Physics, 116(5), p.664 - 676, 2019/05

 Times Cited Count:7 Percentile:77.01(Environmental Sciences)

Recently, Task Group 103 of the ICRP developed the mesh-type reference computational phantoms (MCRPs), which are planned for use in future ICRP dose coefficient calculation. Performance of major Monte Carlo particle transport codes (Geant4, MCNP6, and PHITS) were tested with MCRP. External and internal exposure of various particles and energies were calculated and the computational times and required memories were compared. Additionally calculation for voxel-mesh phantom was also conducted so that the influence of different mesh-representation in each code was studied. Memory usage of MRCP was as large as 10 GB with Geant4 and MCNP6 while it is much less with PHITS (1.2 GB). In addition, the computational time required for MRCP tends to increase compared to voxel-mesh phantoms with Geant4 and MCNP6 while it is equal or tends to decrease with PHITS.

Journal Articles

Development of unstructured mesh-based numerical method for sodium-water reaction phenomenon

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

Nuclear Technology, 205(1-2), p.119 - 127, 2019/01

 Times Cited Count:2 Percentile:32.52(Nuclear Science & Technology)

To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.

Journal Articles

Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry

Han, M. C.*; Yeom, Y. S.*; Lee, H. S.*; Shin, B.*; Kim, C. H.*; Furuta, Takuya

Physics in Medicine & Biology, 63(9), p.09NT02_1 - 09NT02_9, 2018/05

 Times Cited Count:3 Percentile:25.19(Engineering, Biomedical)

The multi-threading computation performances of the Geant4, MCNP6, and PHITS codes were evaluated using three tetrahedral-mesh phantoms with different complexity. Photon and neutron transport simulations were conducted and the initialization time, calculation time, and memory usage were measured as a function of the number of threads N used in the simulation. The initialization time significantly increases with the complexity of the phantom, but not much with the number of the threads. For the calculation time, Geant4 showed good parallelization efficiency with multi-thread computation (30 times speed-up factor for N = 40) adopting the private tallies while saturation of the speed-up factor were observed in MCNP6 and PHITS (10 and a few times for N = 40) due to the time delay for the sharing tallies. On the other hand, Geant4 requires larger memory specification and the memory usage rapidly increases with the number of threads compared to MCNP6 or PHITS. It is notable that when compared to the other codes, the memory usage of PHITS is much smaller, regardless of both the complexity of the phantom and the number of the threads.

Journal Articles

Development of unstructured mesh-based numerical method for sodium-water reaction phenomenon in steam generators of sodium-cooled fast reactors

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

Journal of Nuclear Science and Technology, 54(10), p.1036 - 1045, 2017/10

 Times Cited Count:4 Percentile:45.14(Nuclear Science & Technology)

To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium. The effect of use of the unstructured mesh was also investigated by the two analyses using structured and unstructured mesh.

Journal Articles

Development of unstructured mesh-based numerical method for sodium-water reaction phenomenon

Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki; Watanabe, Akira*

Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 12 Pages, 2017/09

To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.

Journal Articles

Development of unstructured mesh-based numerical method for sodium-water reaction phenomenon in steam generators of sodium-cooled fast reactors

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohno, Shuji; Ohshima, Hiroyuki

Proceedings of OECD/NEA & IAEA Workshop on Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation (CFD4NRS-6) (Internet), 11 Pages, 2016/09

For assessment of the wastage environment under tube failure accident in a steam generator of sodium-cooled fast reactors, a mechanistic computer code called SERAPHIM calculating compressible multicomponent multiphase flow with sodium-water chemical reaction has been developed. The original SERAPHIM code is based on the finite difference method. In this study, unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an under expanded jet experiment. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.

Journal Articles

Measurement of void fraction distribution in steam-water two-phase flow in a 4$$times$$4 bundle at 2 MPa

Liu, W.; Nagatake, Taku; Shibata, Mitsuhiko; Takase, Kazuyuki; Yoshida, Hiroyuki

Transactions of the American Nuclear Society, 114, p.875 - 878, 2016/06

To contribute to the clarification of the Fukushima Daiichi Accident, JAEA is working on getting instantaneous void fraction distribution data in steam water two - phase flow in rod bundle geometry under high pressure, high temperature condition, with using Wire Mesh Sensor (WMS) developed at JAEA for high pressure, high temperature condition, focusing on the low flow rate condition after the reactor scram. This paper reports the experimental results for the measured void fraction distribution in steam vapor two-phase flow in a 4 $$times$$ 4 bundle under 1.6 MPa (202 $$^{circ}$$C), 2.1 MPa (215 $$^{circ}$$C) and 2.6 MPa (226 $$^{circ}$$C) conditions. The data is expected to be used in the validation of the detailed two-phase flow codes TPFIT and ACE3D developed at JAEA. The time and space averaged void fraction data is also expected being used in the validation of the drift flux models implemented in the two fluids codes, such as TRACE code.

Journal Articles

Structural analysis for assembly by integrating parts

Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Okada, Tatsuo*; Tsuruta, Osamu*; Sawa, Kazuhiro; Iigaki, Kazuhiko

Proceedings of 22nd International Conference on Nuclear Engineering (ICONE-22) (DVD-ROM), 9 Pages, 2014/07

Almost all industrial products are assembled from multiple parts. A nuclear facility is a large structure consisting of more than 10 million components. This paper discusses a method to analyze an assembly by gathering data on its component parts. Gathered data on component may identify ill conditioned meshes for connecting surfaces between components. These ill meshes are typified by nodal point disagreement in finite element discretization. A technique to resolve inconsistencies in data among the components is developed. By using this technique, structural analysis for an assembly can be carried out, and results can be obtained by the use of supercomputers, such as the K computer. Numerical results are discussed for components of the High Temperature Engineering Test Reactor.

Journal Articles

Nodal arrangements for boundary treatment in EFGM

Tian, R.; Nakajima, Norihiro; Yagawa, Genki

Keisan Kogaku Koenkai Rombunshu, 10(1), p.397 - 400, 2005/05

An attempt is made to treat boundary conditions in EFGM through only nodal arrangements. One of major merits of the proposed nodal arrangement scheme is its straightforwardness in implementation. The accuracy of this nodal arrangement boundary treatment and its influence on convergence are assessed by comparing with the Lagrange multiplier and penalty methods using one- and two- dimensional problems. The nodal arrangement scheme shows a same performance as the Lagrange multiplier and penalty methods in the one-dimensional tests, but it evidently outperforms the penalty method in the two-dimensional tests.

Journal Articles

Calibration of heavy ion beam probe energy analyzer using mesh probe in the JFT-2M tokamak

Kamiya, Kensaku; Miura, Yukitoshi; Ido, Takeshi*; Hamada, Yasuji*

Review of Scientific Instruments, 74(9), p.4206 - 4208, 2003/09

 Times Cited Count:0 Percentile:0.01(Instruments & Instrumentation)

no abstracts in English

JAEA Reports

Analysis of the applicability of acceleration methods for a triangular prism geometry nodal diffusion code

Fujimura, Toichiro*; Okumura, Keisuke

JAERI-Research 2002-024, 27 Pages, 2002/11

JAERI-Research-2002-024.pdf:1.04MB

A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described.

JAEA Reports

Application to the software of earth simulator, CHIKAKU DYNAMIC and evaluation using PATRAS

Kobayashi, Minoru*

JAERI-Data/Code 2002-016, 40 Pages, 2002/09

JAERI-Data-Code-2002-016.pdf:3.78MB

no abstracts in English

Journal Articles

Development of mesh probe for the calibration of the HIBP diagnostic system in the JFT-2M tokamak

Kamiya, Kensaku; Miura, Yukitoshi; Tsuzuki, Kazuhiro; Ido, Takeshi*; Hamada, Yasuji*; Nakayama, Takeshi*

Review of Scientific Instruments, 72(1), p.579 - 582, 2001/01

 Times Cited Count:2 Percentile:20.57(Instruments & Instrumentation)

no abstracts in English

JAEA Reports

The Development of MESHNOTE Code for Radionuclide Migration in the Near Field

; Makino, Hitoshi; Peter*

JNC TN8400 99-095, 69 Pages, 1999/12

JNC-TN8400-99-095.pdf:10.06MB

MESHNOTE code was developed to evaluate the engineered barrier system in collaboration with QuantiSci. This code is used to simulate glass dissolution, diffusive transport of nuclides in the buffer material and release to surrounding host rock. MESHNOTE is a one-dimensional finite difference, code, which uses cylindrical co-ordinates for the solution of a radially symmetric diffusion problem. MESHNOTE has the followig characteristics: (1) MESHNOTE can solve for diffusive transport of nuclides through an annulus shaped buffer region while accounting for multiple decay chains, linear and non-linear sorption onto the buffer materials and elemental solubility limits; (2) MESHNOTE can solve for ingrowth of plural daughter nuclides from a singular parent nuclide (branching), and the ingrowth of a singular daughter nuclide from plural parent nuclides (rejoining); (3) MESHNOTE can treat the leaching of nuclide from the vitrified waste and the release of nuclide from buffer to surrounding rock, which are boundary conditions for migration in the buffer, basing on the phenomena; (4) MESHNOTE can treat principal parameters (e.g. solubility and distribution coefficient) relevant to nuclide migration as time and space-dependence parameters; (5) The time stepping scheme in MESHNOTE is controlled by tolerance defined by the user. The time stepping will increase automatically while checking the accuracy of the numerical solution. The conceptual model, the mathematical model and the numerical implementation of the MESHNOTE code are described in this report and the characteristic functions of MESHNOTE are verified by comparing with analytical solutions or simulations produced with other calculation codes.

JAEA Reports

None

Fusaeda, Shigeki*

JNC TJ1400 99-022, 19 Pages, 1999/02

JNC-TJ1400-99-022.pdf:1.15MB

no abstracts in English

JAEA Reports

None

Fusaeda, Shigeki*

JNC TJ1400 99-021, 86 Pages, 1999/02

JNC-TJ1400-99-021.pdf:9.09MB

no abstracts in English

51 (Records 1-20 displayed on this page)