Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-026, 80 Pages, 2024/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted from FY2019 to FY2022. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions.
Yoshida, Kazuo; Hiyama, Mina*; Tamaki, Hitoshi
JAEA-Research 2024-007, 24 Pages, 2024/08
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. It has been observed experimentally that volatility of RuO is suppressed by HNO generated by HNO radiolysis. The analysis of chemical reactions of NO including HNO and HNO in the waste tank is essential to simulate of these phenomena. To resolve this issue, an analytical approach has been attempted to couple dynamically two computer codes SHAWED and SCHERN. The simulation of boiling behavior in the tank is conducted with SHAWED. SCHERN simulates chemical behaviors of HNO, HNO and NO in the tank. A programmatic coupling algorithm and a trial simulation of the accident are presented in this report.
Department of Decommissioning and Waste Management
JAEA-Review 2024-004, 124 Pages, 2024/07
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2022 to March 31, 2023. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2022 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 262 m of combustible solid wastes and 113 m of noncombustible solid wastes and 203 m of liquid wastes. After adequate treatment, 527 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 122,925 as of the end of FY2022 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF). As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.
Collaborative Laboratories for Advanced Decommissioning Science; Fukushima University*
JAEA-Review 2023-024, 109 Pages, 2024/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of methodology combining chemical analysis technology with informatics technology to understand perspectives property of debris and tie-up style human resource development" conducted in FY2022. The present study aims to goal of this study is to implement a research plan relate to a development of combinational technology of new chemical analysis with informatics, and the aim is to develop new system for whole image estimation system using small quantities of information.
Tsai, Y. H.*; Kobata, Masaaki; Fukuda, Tatsuo; Tanida, Hajime; Kobayashi, Toru; Yamashita, Yoshiyuki*
Applied Physics Letters, 124(11), p.112105_1 - 112105_5, 2024/03
Times Cited Count:1 Percentile:0.00(Physics, Applied)Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*
JAEA-Review 2023-021, 112 Pages, 2024/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted from FY2018 to FY2021 (this contract was extended to FY2021). The present study aims to understand the basic properties (size, chemical composition, isotopic composition - including concentration of -emitters, electrostatic properties, and optical properties, etc.) of fine particles composed of silicate with insoluble properties which contain regions of highly concentrated radioactive cesium (Cs) released to the environment by the accident at the Fukushima Daiichi Nuclear Power Station of TEPCO in 2011 March.
Zablackaite, G.; Shiotsu, Hiroyuki; Kido, Kentaro; Sugiyama, Tomoyuki
Nuclear Engineering and Technology, 56(2), p.536 - 545, 2024/02
Times Cited Count:1 Percentile:77.18(Nuclear Science & Technology)Luu, V. N.; Nakajima, Kunihisa
Mechanical Engineering Journal (Internet), 11(2), p.23-00446_1 - 23-00446_11, 2024/01
Tobita, Minoru*; Goto, Katsunori*; Omori, Takeshi*; Osone, Osamu*; Haraga, Tomoko; Aono, Ryuji; Konda, Miki; Tsuchida, Daiki; Mitsukai, Akina; Ishimori, Kenichiro
JAEA-Data/Code 2023-011, 32 Pages, 2023/11
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to the study of radioactivity concentration evaluation methods for radioactive wastes generated from nuclear research facilities, we collected and analyzed concrete samples generated from JRR-3, JRR-4 and JAERI Reprocessing Test Facility. In this report, we summarized the radioactivity concentrations of 23 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Cs, Ba, Eu, Eu, Ho, U, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2021-2022.
Hata, Kuniki; Hanawa, Satoshi; Chimi, Yasuhiro; Uchida, Shunsuke; Lister, D. H.*
Journal of Nuclear Science and Technology, 60(8), p.867 - 880, 2023/08
Times Cited Count:2 Percentile:35.75(Nuclear Science & Technology)One of the major subjects for evaluating the corrosive conditions in the PWR primary coolant was to determine the optimal hydrogen concentration for mitigating PWSCC without any adverse effects on major structural materials. As suitable procedures for evaluating the corrosive conditions in PWR primary coolant, a couple of procedures, i.e., water radiolysis and ECP analyses, were proposed. The previous article showed the radiolysis calculation in the PWR primary coolant, which was followed by an ECP study here. The ECP analysis, a couple of a mixed potential model and an oxide layer growth model, was developed originally for BWR conditions, which was extended to PWR conditions with adding Li (Na) and H effects on the anodic polarization curves. As a result of comparison of the calculated results with INCA in-pile-loop experiment data as well as other experimental data, it was confirmed that the ECPs calculated with the coupled analyses agreed with the measured within 100mV discrepancies.
Hata, Kuniki; Uchida, Shunsuke; Hanawa, Satoshi; Chimi, Yasuhiro; Sato, Tomonori
Proceedings of 21st International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors (Internet), 14 Pages, 2023/08
Department of Decommissioning and Waste Management
JAEA-Review 2023-001, 136 Pages, 2023/06
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2021 to March 31, 2022. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2021 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 206 m of combustible solid wastes and 155 m of noncombustible solid wastes and 113 m of liquid wastes. After adequate treatment, 760 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 126,827 as of the end of FY2021 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Compaction Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.
Thwe Thwe, A.; Kadowaki, Satoshi; Nagaishi, Ryuji
Journal of Nuclear Science and Technology, 60(6), p.731 - 742, 2023/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In this study, we performed numerical calculations of unsteady reaction flow considering detailed chemical reactions, investigated the unstable behavior of hydrogen-air dilute premixed flame due to intrinsic instability, and clarified the effects of unburned gas temperature and pressure. I made it. The unstable behavior of the flame in a wide space was simulated, and the burning rate of the cellular flame was obtained. Then, the effects of heat loss and flame scale on flame unstable behavior were investigated. The burning velocity of a planar flame increases as the unburned-gas temperature increases and it decreases as the unburned-gas pressure and heat loss increase. The normalized burning velocity increases when the pressure increases and heat loss becomes large, and it decreases when the temperature increases. This is because the high unburned-gas pressure and heat loss promote the unstable behavior and instability of flame.
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2023-001, 26 Pages, 2023/05
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an analytical approach has been developed using computer simulation programs to assess the radioactive source term from those facilities. The proposed approach consists analyses with three computer programs. At first, the simulation of boiling behavior in the HLLW tank is conducted with SHAWED code. Next step, the thermal-hydraulic behavior in the facility building is simulated with MELCOR code based on the results at the first step simulation such as flowed out mixed steam flow rate, temperature and volatilized Ru from the tank. The final analysis step is carried out for estimating amount of released radioactive materials with SCHERN computer code which simulates chemical behaviors of nitric acid, nitrogen oxide and Ru based on the condition also simulated MELCOR. Series of sample simulations of the accident at a hypothetical typical facility are presented with the data transfer between those codes in this report.
Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; Konda, Miki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2023-002, 81 Pages, 2023/05
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2020.
Luu, V. N.; Nakajima, Kunihisa
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
Ouchi, Kazuki; Matsumura, Daiju; Tsuji, Takuya; Kobayashi, Toru; Otobe, Haruyoshi; Kitatsuji, Yoshihiro
RSC Advances (Internet), 13(24), p.16321 - 16326, 2023/05
Times Cited Count:1 Percentile:17.05(Chemistry, Multidisciplinary)We clarified the chemical state transformation of deposits following the reduction of uranyl ion (UO) from the results of electrochemical quartz crystal microbalance, impedance spectra and X-ray absorption fine structure measurements. We propose the following deposition mechanism: (1) U is formed by the disproportionation of U. (2) U forms U hydroxide deposits, and (3) finally, the hydroxide deposits transform into U oxide, generally having a larger electrical resistance than the former.
Journeau, C.*; Delacroix, J.*; Guvar, C.*; Testud, V.*; Brackx, E.*; Porcheron, E.*; Bouland, A.*; Berlemont, R.*; Ikeda, Atsushi
Science Talks (Internet), 6, p.100215_1 - 100215_9, 2023/05
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 6 Pages, 2023/04
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2022-066, 91 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted in FY2021. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions. In fiscal year 2021, the members of the project team have conducted on the microbial degradation of the simulated fuel debris under -ray irradiation, complex formation of pentavalent uranium, construction of microchannel system to detect micro-particles and the simulated fuel debris, sorption of tetravalent elements ...