Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Inagaki, Yaohiro*; Idemitsu, Kazuya*; Arima, Tatsumi*; Maeda, Toshikatsu; Ogawa, Hiromichi; Itonaga, Fumio
Materials Research Society Symposium Proceedings, Vol.713, p.589 - 596, 2002/00
A large number of studies on HLW glass corrosion have shown that the glass reacts with water to form more stable mineral phases (alteration phases) during the long-term geological disposal. The phase formation is essential to evaluate the radionuclide release from the glass during the long-term disposal. The purpose of this study is to evaluate, experimentally, the mineral phase formation from HLW glass and the associated cesium release. Static corrosion tests were performed on powdered R7T7 glass in alkalline solutions at elevated temperatures to accelerate the reaction, and mineral phases formed were analyzed by XRD. The results showed that analcime (zeolite) is formed as the dominant phase coexisting with SiO(am), and beidellite(smectite) or gibbsite coexists dependiting on the conditions. The solution analysis indicated that most of the cesium is retained in the phases of beidellite and analcime by sorption.