Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermal conductivity measurement of uranium-plutonium mixed oxide doped with Nd/Sm as simulated fission products

Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01

 Times Cited Count:1 Percentile:63.33(Materials Science, Multidisciplinary)

The thermal conductivities of near-stoichiometric (U,Pu,Am)O$$_{2}$$ doped with Nd$$_{2}$$O$$_{3}$$/Sm$$_{2}$$O$$_{3}$$, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)$$^{-1}$$. The dependences of the coefficients A and B on the Nd/Sm content (C$$_{Nd}$$ and C$$_{Sm}$$, respectively) are evaluated as: A(mK/W)=1.70 $$times$$ 10$$^{-2}$$ + 0.93C$$_{Nd}$$ + 1.20C$$_{Sm}$$, B(m/W)=2.39 $$times$$ 10$$^{-4}$$.

Journal Articles

Development of an integrated computer code system for analyzing irradiation behaviors of a fast reactor fuel

Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi

Nuclear Technology, 207(8), p.1280 - 1289, 2021/08

 Times Cited Count:3 Percentile:34.17(Nuclear Science & Technology)

Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.

Journal Articles

Fission gas release from irradiated mixed-oxide fuel pellet during simulated reactivity-initiated accident conditions; Results of BZ-3 and BZ-4 tests

Kakiuchi, Kazuo; Udagawa, Yutaka; Amaya, Masaki

Annals of Nuclear Energy, 155, p.108171_1 - 108171_11, 2021/06

 Times Cited Count:1 Percentile:15.09(Nuclear Science & Technology)

Journal Articles

Transient response of LWR fuels (RIA)

Udagawa, Yutaka; Fuketa, Toyoshi*

Comprehensive Nuclear Materials, 2nd Edition, Vol.2, p.322 - 338, 2020/08

Journal Articles

Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior

Uwaba, Tomoyuki; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*

Nuclear Engineering and Design, 331, p.186 - 193, 2018/05

 Times Cited Count:4 Percentile:37.66(Nuclear Science & Technology)

A computer code for the analysis of the overall irradiation performance of a fast reactor mixed-oxide (MOX) fuel element was coupled with a specialized code for the analysis of fission product cesium behaviors in a MOX fuel element. The coupled code system allowed for the analysis of the radial and axial Cs migrations, the generation of Cs chemical compounds and fuel swelling due to Cs-fuel-reactions in association with the thermal and mechanical behaviors of the fuel element. The coupled code analysis was applied to the irradiation performance of a fast reactor MOX fuel element attaining high burnup for discussion on the axial distribution of Cs, fuel-to-cladding mechanical interaction owing to the Cs-fuel-reactions by comparing the calculated results with post irradiation examinations.

Journal Articles

Measurement of vaccuum occluded gases released from uranium-plutonium mixed carbide and uranium carbide fuels

; ;

Journal of Nuclear Science and Technology, 25(5), p.456 - 463, 1988/05

 Times Cited Count:4 Percentile:46.72(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Results of The Preliminary Tests For Mixed Oxide Fuel Test Program at NSRR

Inabe, Teruo; ;

JAERI-M 9178, 23 Pages, 1980/11

JAERI-M-9178.pdf:1.52MB

no abstracts in English

Oral presentation

The Possible use of short half-life noble gas fission products for measurement of criticality and identification of plutonium in fuel debris canister

Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi

no journal, , 

8 (Records 1-8 displayed on this page)
  • 1