検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Martensitic transformation and shape memory effect in Mn-rich Cu-Mn-Al alloys

伊東 達矢; Xu, S.*; Xu, X.*; 大森 俊洋*; 貝沼 亮介*

Shape Memory and Superelasticity, 9 Pages, 2025/00

The microstructure, crystal structures, cold workability, and martensitic transformation temperatures of several Cu$$_{100-{it x}-{it y}}$$Mn$$_{it x}$$Al$$_{it y}$$ (40 $$leq$$ ${it x}$ $$leq$$ 55; 10 $$leq$$ ${it y}$ $$leq$$ 13; at%) alloys were analyzed. For the first time, martensitic transformation was revealed Mn-rich Cu-Mn-Al alloys. The surface relief of the martensite phase reversibly appeared and disappeared during cooling and heating, along with small thermal hysteresis, implying a thermoelastic transformation. The crystal structures of the parent and martensite phases are B2 and 2M(BCT), respectively, with c$/a being approximately 1.35. Cold workability improves with decreasing Al content, exhibiting a trend similar to that observed for previously reported Cu-rich Cu-Al-Mn shape memory alloys. The martensitic transformation temperatures decrease with increasing Al content and increase with increasing Mn content. These results are consistent with the stability trends of the parent body-centered cubic phase in the phase diagram at high temperature. The shape memory effect with a recovery strain of 1.3% was observed in a 5.0% pre-stretched Cu$_{39}$$Mn$$_{50}$$Al$$_{11}$$ (at%) sample. This alloy demonstrates moderate cold workability and cost-effectiveness, exhibiting potential as an alternative for conventional shape memory alloys in various applications.

1 件中 1件目~1件目を表示
  • 1