Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakayoshi, Akira; Jegou, C.*; De Windt, L.*; Perrin, S.*; Washiya, Tadahiro
Nuclear Engineering and Design, 360, p.110522_1 - 110522_18, 2020/04
Times Cited Count:14 Percentile:91.63(Nuclear Science & Technology)Li, X.; Sato, Ikken; Yamaji, Akifumi*; Duan, G.*
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07
Molten corium-concrete interaction (MCCI) is an important ex-vessel phenomenon that could happen during the late phase of a hypothetical severe accident in a light water reactor. In the present study, a three-dimensional (3-D) numerical study has been performed to simulate COMET-L3 test carried out by KIT with a stratified molten pool configuration of simulant materials with improved MPS method. The heat transfer between corium/crust/concrete was modeled with heat conduction between particles. Moreover, the potential influence of the siliceous aggregates was also investigated by setting up two different case studies since there was previous study indicating that siliceous aggregates in siliceous concrete might contribute to different axial and radial concrete ablation rates. The simulation results have indicated that metal melt as corium in MCCI can have completely different characteristics regarding concrete ablation pattern from that of oxidic corium, which needs to be taken into consideration when assessing the containment melt-through time in severe accident management.