Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*
Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02
Times Cited Count:21 Percentile:98.41(Mechanics)A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.
Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*
Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00
Wang, Z.; Iwasawa, Yuzuru; Sugiyama, Tomoyuki
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 12 Pages, 2020/08
Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki
Journal of Nuclear Science and Technology, 54(10), p.1036 - 1045, 2017/10
Times Cited Count:5 Percentile:48.71(Nuclear Science & Technology)To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium. The effect of use of the unstructured mesh was also investigated by the two analyses using structured and unstructured mesh.
Sakai, Mikio; Yamamoto, Toshihiro; Murazaki, Minoru; Miyoshi, Yoshinori
Nuclear Technology, 149(2), p.141 - 149, 2005/02
Times Cited Count:3 Percentile:17.99(Nuclear Science & Technology)In the conventional criticality evaluation of the nuclear powder system, the effects of particulate behavior have not been considered. In other words, it is difficult to reflect the particle behavior into the conventional criticality evaluation. We have developed a novel criticality evaluation code to resolve this issue. The criticality evaluation code, coupling a Discrete Element Method simulation code with a continuous-energy Monte Carlo transport code, makes it possible to study the effect of the particulate behavior on a criticality evaluation. The criticality evaluation code has been applied to the powder system of the MOX fuel powder agitation process. The criticality evaluations have been performed under mixing the MOX fuel powder in a stirred vessel to investigate the effects of the powder boundary deformation and particulate mixture conditions on the criticality evaluation. The evaluation results revealed that the powder uniformity mixture condition and the boundary deformation could make the neutron effective multiplication factor decrease.
Shibamoto, Yasuteru; Sagawa, Jun*; Kukita, Yutaka*; Nakamura, Hideo
Konsoryu, 17(2), p.171 - 179, 2003/06
A bifunctional probe was developed for simultaneous, high-speed measurement of local temperature and phase of fluid at the same place. It was designed for application to water/melt multi-phase experiments involving transient boiling of water on the surface of molten metal. An unsheathed thermocouple (TC) of a small wire diameter was used for phase detection, that is distinction of melt/water/vapor phase, as well as for temperature measurement of each phase. The phase was detected by measuring the electric impedance between the TC and the ground. A 100-kHz AC signal was imposed on the TC wire for this purpose. The AC signal was filtered out from the temperature signal before it was amplified. With the first design of low-pass filter (LPF), however, a large noise was induced in the temperature signal every time the TC was grounded electrically by contact with molten metal. This problem was overcome by redesigning the LPF. The final design succeeded in measuring the quick movements of interface and the temperature changes in the individual phases in a water-melt-vapor multiphase flow.
Nakamura, Hideo; Shibamoto, Yasuteru; Anoda, Yoshinari; Kukita, Yutaka*; Mishima, Kaichiro*; Hibiki, Takashi*
Nuclear Technology, 125(2), p.213 - 224, 1999/02
Times Cited Count:8 Percentile:54.16(Nuclear Science & Technology)no abstracts in English
Mishima, Kaichiro*; Hibiki, Takashi*; Saito, Yasushi*; Nakamura, Hideo; Matsubayashi, Masahito
Nuclear Instruments and Methods in Physics Research A, 424(1), p.66 - 72, 1999/00
Times Cited Count:22 Percentile:82.44(Instruments & Instrumentation)no abstracts in English
*; *
Therm. Sci. Eng., 7(1), p.21 - 30, 1999/00
no abstracts in English
Kunugi, Tomoaki
Nihon Kikai Gakkai Rombunshu, B, 63(609), p.88 - 96, 1997/05
no abstracts in English
Moriyama, Kiyofumi; Yamano, N.; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun
Proc. of ASMEJSME 4th Int. Conf. on Nuclear Engineering 1996 (ICONE-4), 1(PART B), p.903 - 915, 1996/00
no abstracts in English