Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Efthimiopoulos, I.*; Klotz, S.*; Kunc, K.*; Baptiste, B.*; Chauvigne, P.*; Hattori, Takanori
Physical Review B, 111(13), p.134103_1 - 134103_13, 2025/04
Times Cited Count:0We present a comprehensive study of the high pressure behaviour of ReO using X-ray and neutron diffraction, Raman scattering and first-principles calculations to 15 GPa. We show that the ambient pressure
structure converts at 0.7 GPa in a continuous phase transition directly to a cubic phase with space group
and rhombohedral
structures in this pressure range are an artifact due to an alteration of the sample by high-flux synchrotron X-ray radiation. The structural pressure dependence of the
O samples are presented. The data shed light onto the unusual transition and densification mechanism due to progressive tilting of essentially rigid ReO
octahedra.
Inoue, Rintaro*; Oda, Takashi; Nakagawa, Hiroshi; Tominaga, Taiki*; Ikegami, Takahisa*; Konuma, Tsuyoshi*; Iwase, Hiroki*; Kawakita, Yukinobu; Sato, Mamoru*; Sugiyama, Masaaki*
Biophysical Journal, 124(3), p.540 - 548, 2025/02
Times Cited Count:0 Percentile:0.00(Biophysics)Materials Sciences Research Center
JAEA-Review 2024-037, 141 Pages, 2024/11
Fifteen neutron beam experimental instruments managed by JAEA are installed in JRR-3 (Japan Research Reactor No.3) and are available for internal use including upgrading of instruments and for external users to produce various research results. This report summarizes the progress of internal application research and technical development such as upgrading of neutron beam instruments in the fiscal years 2021 and 2022 after the restart of operation.
Zhu, L.*; He, H.*; Naeem, M.*; Sun, X.*; Qi, J.*; Liu, P.*; Harjo, S.; Nakajima, Kenji; Li, B.*; Wang, X.-L.*
Physical Review Letters, 133(12), p.126701_1 - 126701_6, 2024/09
Times Cited Count:1 Percentile:53.15(Physics, Multidisciplinary)Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.
Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09
Times Cited Count:1 Percentile:47.38(Nanoscience & Nanotechnology)Micheau, C.; Ueda, Yuki; Motokawa, Ryuhei; Akutsu, Kazuhiro*; Yamada, Norifumi*; Yamada, Masako*; Moussaoui, S. A.*; Makombe, E.*; Meyer, D.*; Berthon, L.*; et al.
Journal of Molecular Liquids, 401, p.124372_1 - 124372_12, 2024/05
Times Cited Count:2 Percentile:70.16(Chemistry, Physical)Shamoto, Shinichi; Akatsu, Mitsuhiro*; Chang, L.-J.*; Nemoto, Yuichi*; Ieda, Junichi
Applied Physics Letters, 124(11), p.112402_1 - 112402_5, 2024/03
Times Cited Count:1 Percentile:46.22(Physics, Applied)The magnon excitation by ultrasound injection in YFe
O
is studied by inelastic neutron scattering. Both longitudinal and transverse ultrasound injections enhanced the inelastic neutron scattering intensity.
Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Okita, Shoichiro; Goto, Minoru
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10
Iwase, Hiroki*; Akamatsu, Masaaki*; Inamura, Yasuhiro; Sakaguchi, Yoshifumi*; Morikawa, Toshiaki*; Kasai, Satoshi*; Ouchi, Keiichi*; Kobayashi, Kazuki*; Sakai, Hideki*
Journal of Applied Crystallography, 56(1), p.110 - 115, 2023/02
Times Cited Count:5 Percentile:70.62(Chemistry, Multidisciplinary)With the increasing importance of light-responsive materials, it is vital to analyze the relationship between function and structural changes induced by light irradiation. Small-angle scattering (SAS) is effective for such structural analysis. However, quantitatively capturing local molecular structure formation and molecular reactions at a scale of less than 1 nm via SAS is difficult. In this study, to analyze the structure of non-equilibrium phenomena in light-responsive materials, a new sample environment has been developed for a time-of-flight small- and wide-angle neutron scattering instrument (TAIKAN), comprising a UV-Vis irradiation system, UV-Vis absorption measurement equipment and photodetector. Simultaneous measurement of small-angle neutron scattering and UV-Vis absorption was achieved. This system was used to demonstrate the in situ observation of UV-Vis irradiation-induced structural change of micelles formed by a light-responsive surfactant sample in an aqueous solution.
Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.
New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Omasa, Yoshinori*; Takagi, Shigeyuki*; Toshima, Kento*; Yokoyama, Kaito*; Endo, Wataru*; Orimo, Shinichi*; Saito, Hiroyuki*; Yamada, Takeshi*; Kawakita, Yukinobu; Ikeda, Kazutaka*; et al.
Physical Review Research (Internet), 4(3), p.033215_1 - 033215_9, 2022/09
Tripathi, R.*; Adroja, D. T.*; Ritter, C.*; Sharma, S.*; Yang, C.*; Hillier, A. D.*; Koza, M. M.*; Demmel, F.*; Sundaresan, A.*; Langridge, S.*; et al.
Physical Review B, 106(6), p.064436_1 - 064436_17, 2022/08
Times Cited Count:8 Percentile:56.01(Materials Science, Multidisciplinary)Arai, Yosuke*; Kuroda, Kenta*; Nomoto, Takuya*; Tin, Z. H.*; Sakuragi, Shunsuke*; Bareille, C.*; Akebi, Shuntaro*; Kurokawa, Kifu*; Kinoshita, Yuto*; Zhang, W.-L.*; et al.
Nature Materials, 21(4), p.410 - 415, 2022/04
Times Cited Count:13 Percentile:74.32(Chemistry, Physical)Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*
Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11
Times Cited Count:4 Percentile:24.71(Chemistry, Physical)Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO
particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO
nanofluids.
Tominaga, Taiki*; Kobayashi, Makoto*; Yamada, Takeshi*; Matsuura, Masato*; Kawakita, Yukinobu; Kasai, Satoshi*
JPS Conference Proceedings (Internet), 33, p.011095_1 - 011095_5, 2021/03
A vertical movement type of sample changer for the neutron spectrometer BL02, J-PARC MLF was developed for our top-loading type cryostat. The sample changer, termed as "PEACE", can control reproducibility of the irradiated position using guides made of polyether ether ketone. The variation between the background scattering profiles of three sample positions was found to be less than plus minus 1.6%. This result is reasonable, considering the deviation of sample position of less than plus minus 0.3 mm from the vertical axis.
Tominaga, Taiki*; Kawakita, Yukinobu; Nakagawa, Hiroshi; Yamada, Takeshi*; Shibata, Kaoru
JPS Conference Proceedings (Internet), 33, p.011086_1 - 011086_5, 2021/03
We developed a quartz double cylindrical sample cell optimized for a backscattering neutron spectrometer, especially for BL02 (DNA), MLF in J-PARC. A quartz glass tube, with one end closed, is shaved to obtain a wall thickness of 0.55 mm. The inner tube is properly centered using a protrusion into the outer tube such that the interstice between the outer and inner tubes keeps constant. This quartz cell can be used for samples that should not be in contact with the aluminum surface. We verified cell's background effect between the quartz cell and Al cell by QENS measurements using DO buffer. The elastic intensity profiles of the buffer in a low Q region were identical between both quartz cell and Al cell (A1070). In a high Q region, however, the profiles were different caused by the first sharp diffraction peak of quartz glass. For this region the data should be analyzed by consideration of absorption correction and diffraction in individual thickness of quartz cell.
Gonzalz, M. A.*; Borodin, O.*; Kofu, Maiko; Shibata, Kaoru; Yamada, Takeshi*; Yamamuro, Osamu*; Xu, K.*; Price, D. L.*; Saboungi, M.-L.*
Journal of Physical Chemistry Letters (Internet), 11(17), p.7279 - 7284, 2020/09
Times Cited Count:23 Percentile:80.48(Chemistry, Physical)Ichihara, Akira
JAEA-Review 2019-046, 36 Pages, 2020/03
Toward the revision of JENDL-4.0, we conducted a literature survey on how to compute the cross section of thermal neutrons scattered by a liquid. This report summarizes the computational methods for evaluating thermal neutron cross sections with molecular dynamics simulations. The cross section can be expressed with a function called as scattering law. For light and heavy water, the scattering law data instead of the cross sections have been provided in nuclear databases. In this report we review the formulations of the scattering laws. The scattering laws can be derived from both the intermediate scattering function and the space-time correlation function. Features of the derived scattering laws are briefly explained. It is shown that the scattering law data can be evaluated using a molecular dynamics simulation of the liquid that is the target of thermal neutrons.
Fujiwara, Satoru*; Matsuo, Tatsuhito*; Sugimoto, Yasunobu*; Shibata, Kaoru
Journal of Physical Chemistry Letters (Internet), 10(23), p.7505 - 7509, 2019/12
Times Cited Count:4 Percentile:17.89(Chemistry, Physical)Characterization of the dynamics of disordered polypeptide chains is required to elucidate the behavior of intrinsically disordered proteins and proteins under non-native states related to the folding process. Here we develop a method using quasielastic neutron scattering, combined with small-angle X-ray scattering and dynamic light scattering, to evaluate segmental motions of proteins as well as diffusion of the entire molecules and local side-chain motions. We apply this method to RNase A under the unfolded and molten-globule (MG) states. The diffusion coefficients arising from the segmental motions are evaluated and found to be different between the unfolded and MG states. The values obtained here are consistent with those obtained using the fluorescence-based techniques. These results demonstrate not only feasibility of this method but also usefulness to characterize the behavior of proteins under various disordered states.