Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of multiaxial low cycle creep-fatigue life for Mod.9Cr-1Mo steel under non-proportional loading

Nakayama, Yuta*; Ogawa, Fumio*; Hiyoshi, Noritake*; Hashidate, Ryuta; Wakai, Takashi; Ito, Takamoto*

ISIJ International, 61(8), p.2299 - 2304, 2021/08

 Times Cited Count:0 Percentile:0(Metallurgy & Metallurgical Engineering)

This study discusses the creep-fatigue strength for Mod.9Cr-1Mo steel at a high temperature under multiaxial loading. A low-cycle fatigue tests in various strain waveforms were performed with a hollow cylindrical specimen. The low cycle fatigue test was conducted under a proportional loading with a fixed axial strain and a non-proportional loading with a 90-degree phase difference between axial and shear strains. The low cycle fatigue tests at different strain rates and the creep-fatigue tests at different holding times were also conducted to discuss the effects of stress relaxation and strain holding on the failure life. In this study, two types of multiaxial creep-fatigue life evaluation methods were proposed: the first method is to calculate the strain range using Manson's universal slope method with considering a non-proportional loading factor and creep damage; the second method is to calculate the fatigue damage by considering the non-proportional loading factor using the linear damage law and to calculate the creep damage from the improved ductility exhaustion law. The accuracy of the evaluation methods is much better than that of the methods used in the evaluation of actual machines such as time fraction rule.

Oral presentation

Multiaxial creep-fatigue failure mechanism of Mod. 9Cr-1Mo steel under non-proportional loading; Effect of strain energy on failure lives

Ogawa, Fumio*; Nakayama, Yuta*; Hiyoshi, Noritake*; Hashidate, Ryuta; Wakai, Takashi; Ito, Takamoto*

no journal, , 

The strain energy-based life evaluation method of Mod. 9Cr-1Mo steel under nonproportional multiaxial creep-fatigue loading is proposed. Inelastic strain energy densities were calculated as the areas inside the hysteresis loops. The effect of mean stress has been experimentally considered and the relationship between inelastic strain energy densities and creep-fatigue lives was investigated. It was found from the investigation of hysteresis loops, the decrease in maximum stress leads to prolonged failure life, while stress relaxation during strain holding causes strength reduction. The correction method of inelastic strain energy density was proposed considering the effect of maximum stress in hysteresis loop and minimum stress during strain holding. Furthermore, this result is investigated by overlooking hysteresis data and the mechanisms governing creep-fatigue lives under nonproportional multiaxial loading have been discussed.

2 (Records 1-2 displayed on this page)
  • 1