Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Togawa, Orihiko; Hokama, Tomonori; Hiraoka, Hirokazu
JAEA-Review 2023-013, 48 Pages, 2023/08
When radionuclides are released into the atmospheric environment at a nuclear emergency, protective measures such as evacuation and temporal relocation are carried out using motor vehicles such as private cars and buses to reduce radiation exposure to residents. To confirm conditions of contamination for the evacuated or relocated residents, contamination inspection is conducted, in which it is important not to spoil its rapidity. In the present inspection, wipers and tires are designated to first measuring parts, and they are basically inspected by persons using GM survey meters. Utilization of portable radiation portal monitors is also being considered for rapid and efficient inspection of motor vehicles. In order to contribute to rapid and efficient operation of contamination inspection, this report investigated conditions of contamination and measures of decontaminations for motor vehicles at a nuclear emergency. Although available documents and information were quite few, results of the investigations described in the related documents were extracted and rearranged according to the objectives of this report. Furthermore, these results were considered from a viewpoint of rapid and efficient operation of contamination inspection.
Terada, Hiroaki; Nagai, Haruyasu; Kadowaki, Masanao; Tsuzuki, Katsunori
Journal of Nuclear Science and Technology, 60(8), p.980 - 1001, 2023/08
Times Cited Count:1 Percentile:82.84(Nuclear Science & Technology)It is essential to establish a method for reconstructing the source term and spatiotemporal distribution of radionuclides released into the atmosphere due to a nuclear accident for emergency countermeasures. We examined the dependency of a source term estimation method based on Bayesian inference using atmospheric dispersion simulation and environmental monitoring data on the availability of various monitoring data. Additionally, we examined the applicability of this method to a real-time estimation conducted immediately after an accident. A sensitivity analysis of the estimated source term during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident for combinations of various monitoring data indicated that using monitoring data with a high temporal and spatial resolution and the concurrent use of air concentration and surface deposition data is effective for accurate estimation. A real-time source term estimation experiment assuming the situation of monitoring data acquisition during the FDNPS accident revealed that this method could provide the necessary source term for grasping the overview of surface contamination in the early phase and evaluating the approximate accident scale. If the immediate online acquisition of monitoring data and regular operation of an atmospheric dispersion simulation are established, this method can provide the source term in near-real time.
Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Hokama, Tomonori; et al.
JAEA-Technology 2022-028, 127 Pages, 2023/02
A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report has summarized the knowledge noted above achieved by the aerial radiation monitoring around Ohi and Takahama nuclear power stations. In addition, the examination's progress aimed at introducing airborne radiation monitoring via an unmanned plane during a nuclear disaster and the technical issues are summarized in this report.
Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori
JAEA-Review 2022-049, 76 Pages, 2023/01
Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.
Callen-Kovtunova, J.*; Homma, Toshimitsu
International Journal of Disaster Risk Reduction (Internet), 70, p.102746_1 - 102746_10, 2022/02
Times Cited Count:2 Percentile:45.94(Geosciences, Multidisciplinary)This paper presents key lessons on protecting the public during an emergency at a nuclear power plant (NPP) that have been identified from the accident at the Fukushima Daiichi NPP. The paper describes what emergency arrangements were in place prior to the accident, what occurred during the emergency and then the ascertained lesson. The paper highlights the failings of dose project models, emphasizes several lessons identified from past emergencies, such as the importance of predetermined criteria and emergency zones for determining protective actions. It also presents an essential lesson previously overlooked: the need for arrangements to ensure the safe evacuation of patients from hospitals and care homes.
Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.
JAEA-Technology 2021-020, 138 Pages, 2021/11
A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.
Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori; Nagai, Haruyasu
JAEA-Review 2021-021, 61 Pages, 2021/11
Triggered by the Fukushima Daiichi Nuclear Power Station accident, there have been a lot of arguments among various situations and levels about utilization of atmospheric dispersion models for a nuclear emergency preparedness and response. Most of these arguments, however, were alternative and extreme discussions on whether predictions by computational models could be applied or not for protective measures in a nuclear emergency, and it was hard to say that these arguments were politely conducted, based on scientific verification in an emergency response. It was known, on the other hand, that there were not a few potential users of atmospheric dispersion models and/or calculation results by the models within the Japan Atomic Energy Agency (JAEA) and outside. However, they seemed to have a lack of understanding and a misunderstanding on proper use of different kinds of atmospheric dispersion models. This report compares an outline of models and calculation method in atmospheric dispersion models for a nuclear emergency preparedness and response, with a central focus on the models which have been developed and used in the JAEA. Examples of calculations by these models are also described in the report. This report aims at contributing to future consideration and activities for potential users of atmospheric dispersion models within the JAEA and outside.
Planning and Co-ordination Office, Sector of Nuclear Safety Research and Emergency Preparedness
JAEA-Review 2021-019, 58 Pages, 2021/11
In response to the directives of the 4th medium-to-long-term objectives, Japan Atomic Energy Agency will formulate the 4th medium-to-long-term plan and run its operation according to the plan from the fiscal year 2022. Consequently, the Sector of Nuclear Safety Research and Emergency Preparedness has reviewed the strategies of the safety research for contributing to the demand, "the continuous improvement of nuclear safety and the effectiveness of nuclear disaster prevention". It was also discussed how to proceed the safety research over the medium-to-long-term plan period based on the proposed new strategies. From the viewpoint of developing human resources and maintaining research capabilities in the sector, discussion was made on measures to pass on the knowledge and skills of senior and mid-career researchers to young researchers. The main elements of the proposed strategies are: (1) to efficiently and effectively develop both problem-solving research and advanced or leading research, considering the importance and needs on the nuclear safety and corresponding to regulatory trends and introduction of new technologies, (2) to produce research results of high quality for social implementation, including proactive proposal of measures for enhancing rationality of nuclear safety and regulation by utilizing risk information, and (3) to promote development of human resources and maintenance of technological base through challenging new research subjects. This report summarizes results of the discussion on the medium-to-long-term safety research strategies and the research plans based on the proposed strategies.
Okuno, Hiroshi; Sato, Sohei; Kawakami, Takeshi; Yamamoto, Kazuya; Tanaka, Tadao
Journal of Radiation Protection and Research, 46(2), p.66 - 79, 2021/06
The nuclear accident at the Fukushima Daiichi Nuclear Power Station (NPS) of Tokyo Electric Power Company (TEPCO) was a typical one of the disastrous damages that induced evacuation of the residents around the NPS, which was triggered by the hugest earthquake and associated tsunami. This paper summarized early responses of the Japan Atomic Energy Agency (JAEA), especially of its Nuclear Emergency Assistance and Training Center (NEAT) to the off-site emergencies associated with the TEPCO's Fukushima Daiichi NPS. The paper addressed activities of emergency preparedness of the NEAT before 2011 in relevant to the TEPCO's Fukushima Daiichi NPS, the situation of the NEAT on March 11, 2011, and its early responses to the related off-site emergencies including those caused by the accident at the TEPCO's Fukushima Daiichi NPS. The paper also discussed issues associated with complex disasters.
Hashimoto, Makoto; Kinase, Sakae; Munakata, Masahiro; Murayama, Takashi; Takahashi, Masa; Takada, Chie; Okamoto, Akiko; Hayakawa, Tsuyoshi; Sukegawa, Masato; Kume, Nobuhide*; et al.
JAEA-Review 2020-071, 53 Pages, 2021/03
In the case of a nuclear accident or a radiological emergency, the Japan Atomic Energy Agency (JAEA), as a designated public corporation assigned in the Disaster Countermeasures Basic Act and the Armed Attack Situation Response Law, undertakes technical supports to the national government and local governments. The JAEA is requested to support to evaluate radiation doses to residents in a nuclear emergency, which is specified in the Basic Disaster Management Plan and the Nuclear Emergency Response Manual. For the dose evaluation, however, its strategy, target, method, structure and so on have not been determined either specifically or in detail. This report describes the results of investigation and consideration discussed in the "Working Group for Radiation Dose Evaluation at a Nuclear Emergency" established within the Nuclear Emergency Assistance and Training Center to discuss technical supports for radiation dose evaluation to residents in the case of a nuclear emergency, and aims at contributing to specific and detailed discussion and activities in the future for the national government and local governments, also within the JAEA.
Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.
JAEA-Technology 2020-019, 128 Pages, 2021/02
A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.
Okuno, Hiroshi; Yamamoto, Kazuya
JAEA-Review 2020-066, 32 Pages, 2021/02
The International Atomic Energy Agency (abbreviated as IAEA) has been implementing the Asian Nuclear Safety Network (abbreviated as ANSN) activities since 2002. As part of this effort, Topical Group on Emergency Preparedness and Response (abbreviated as EPRTG) for nuclear or radiation disasters was established in 2006 under the umbrella of the ANSN. Based on the EPRTG proposal, the IAEA conducted 23 Asian regional workshops in the 12 years from 2006 to 2017. Typical topical fields of the regional workshops were nuclear emergency drills, emergency medical care, long-term response after nuclear/radiological emergency, international cooperation, national nuclear disaster prevention system. The Japan Atomic Energy Agency has produced coordinators for EPRTG since its establishment and has led its activities since then. This report summarizes the Asian regional workshops conducted by the IAEA based on the recommendations of the EPRTG.
El-Asaad, H.*; Nagai, Haruyasu; Sagara, Hiroshi*; Han, C. Y.*
Annals of Nuclear Energy, 141, p.107292_1 - 107292_9, 2020/06
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Atmospheric dispersion simulations can provide crucial information to assess radioactive plumes in the environment for nuclear emergency preparedness. However, it is a difficult and time-consuming task to make simulations assuming many possible scenarios and to derive data from a vast number of results. Therefore, an interface was developed to assist users in conveying characteristics of plumes from simulation results. The interface uses a large database that contains WSPEEDI-II simulations for the first 20-days of radioactive release from the Fukushima Daiichi Nuclear Power Plant, and it displays essential quantitative data to the user from the database. The user may conduct sensitivity analysis with the help of the interface by changing release condition to generate many different case scenarios.
Terada, Hiroaki; Nagai, Haruyasu; Tanaka, Atsunori*; Tsuzuki, Katsunori; Kadowaki, Masanao
Journal of Nuclear Science and Technology, 57(6), p.745 - 754, 2020/06
Times Cited Count:8 Percentile:74.98(Nuclear Science & Technology)We have estimated source term and analyzed processes of atmospheric dispersion of radioactive materials released during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident by the Worldwide version of System for Environmental Emergency Dose Information. On the basis of this experience, we developed an dispersion calculation method that can respond to various needs in a nuclear emergency and provide useful information for emergency-response planning. By this method, if a release point is known, it is possible to immediately obtain the prediction results by applying provided source term to the database of dispersion-calculation results prepared in advance. With this function, it is easy to compare results by applying various source term with monitoring data, and to find out the optimum source term, which was applied for the source term estimation of the FDNPS accident. By performing this calculation with past meteorological-analysis data, it is possible to immediately get dispersion-calculation results for various source term and meteorological conditions. This database can be used for pre-accident planning, such as optimization of a monitoring plan and understanding of events to be supposed in considering emergency countermeasures.
Iwasaki, Toshiki*; Sekiyama, Tsuyoshi*; Nakajima, Teruyuki*; Watanabe, Akira*; Suzuki, Yasushi*; Kondo, Hiroaki*; Morino, Yu*; Terada, Hiroaki; Nagai, Haruyasu; Takigawa, Masayuki*; et al.
Atmospheric Environment, 214, p.116830_1 - 116830_11, 2019/10
Times Cited Count:6 Percentile:28.58(Environmental Sciences)The utilization of numerical atmospheric dispersion prediction (NDP) models for accidental discharge of radioactive substances was recommended by a working group of the Meteorological Society of Japan. This paper is to validate the recommendation through NDP model intercomparison in the accidental release from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Emission intensity is assumed to be constant during the whole forecast period for the worst-case scenario unless time sequence of emission is available. We expect to utilize forecasts of surface air contaminations for preventions of inhalations of radioactive substances, and column-integrated amounts for mitigation of radiation exposure associated with wet deposition. Although NDP forecasts have ensemble spread, they commonly figure out relative risk in space and time. They are of great benefit to disseminating effective warnings to public without failure. The multi-model ensemble technique may be effective to improve the reliability.
Nagai, Haruyasu; Yamazawa, Hiromi*
Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.230 - 242, 2019/08
An overview of SPEEDI is provided in the context of it development, functions, and role in the framework of nuclear emergency management. Thereafter, we examine how it was used and how it should be used for the Fukushima Daiichi Nuclear Power Station accident from a system developer perspective. We believe that our review can provide lessons or tasks for improving the prediction system and for considering better utilization of the system; it is also beneficial to consider reconstructing the framework of nuclear emergency management. Furthermore, we hope this review will prove useful in understanding and effectively using the atmospheric dispersion predictions from the system in the case of a similar accident in the future.
Yoshizawa, Atsufumi*; Oba, Kyoko; Kitamura, Masaharu*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(2), p.55 - 68, 2019/06
This study aims to improve the potential of an emergency response by analyzing the workload management during the accident at the Emergency Response Center (ERC) of TEPCO's Fukushima Daiichi Nuclear Power Plant. Specifically, the research focused on the response of the ERC during the time between the discontinuation of Unit 3 core water injection and its recovery. It identified the different types of workload at the ERC had and how they had been managed based on the record of a TV conference. It also deduced the casual factors of the responses, supplementing the interview record of the director of ERC at the time by applying workload management analysis. On the basis of these findings, lessons to enhance the potential of the on-site emergency response have been obtained for ERC and outside organizations.
Okuno, Hiroshi; Okamoto, Akiko; Ebine, Noriya; Hayakawa, Tsuyoshi; Tanaka, Tadao
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 15 Pages, 2019/05
In the event of a nuclear or radiological emergency, the Japan Atomic Energy Agency (JAEA) as a designated public corporation assigned in the Disaster Countermeasures Basic Act of Japan undertakes a role to support the national government and local governments. This paper (1) illuminates the roles of the JAEA as a designated public corporation for preparedness and response to a nuclear or radiological emergency of nuclear facilities; (2) summarizes emergency response activities of the JAEA in accordance with its Disaster Management Operation Plan against the off-site radiological emergencies attributed to a loss of control of the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station that occurred in 2011; and (3) reports its activities in normal times especially participation in the drills organized by the national government and local governments in the light of the Basic Disaster Management Plan of Japan and Local Disaster Management Plans of prefectural governments, respectively.
Shimada, Kazumasa; Sasaki, Toshihisa*; Iijima, Masashi*; Munakata, Masahiro
JAEA-Research 2018-012, 68 Pages, 2019/02
The external exposure dose of off-site emergency responders at Fukushima Dai-ichi Nuclear Power Station accident were evaluated in order to consider a radiation protection of emergency responders. The maximum value of individual daily dose of emergency responders whose activities details were recorded from 12th to 31th March 2011 was 650 Sv engaged in evacuation support in Futaba Town on 12th. Next, atmospheric concentrations and deposition of radionuclides were calculated from the source terms estimated by previous studies using atmospheric diffusion and deposit calculation codes, and air dose rates at off-site were estimated. Then, the external exposure dose was calculated for 6 emergency responders whose daily activities and personal doses were continuously recorded. Furthermore, the maximum value and the average value of the calculation external dose of emergency responders in the activity area were compared with the measurement value of the personal dosimeter of them. These results showed that the calculated value of the external exposure dose of emergency responders calculated from the maximum value of the dose rate in the active area roughly includes the measured value.
Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness
JAEA-Review 2018-022, 201 Pages, 2019/01
Nuclear Safety Research Center (NSRC), Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency (JAEA) is conducting technical support to nuclear safety regulation and safety research based on the Mid-Long Term Target determined by Japanese government. This report summarizes the research structure of NSRC and the cooperative research activities with domestic and international organizations as well as the nuclear safety research activities and results in the period from JFY 2015 to 2017 on the nine research fields in NSRC; (1) severe accident analysis, (2) radiation risk analysis, (3) safety of nuclear fuels in light water reactors (LWRs), (4) thermohydraulic behavior under severe accident in LWRs, (5) materials degradation and structural integrity, (6) safety of nuclear fuel cycle facilities, (7) safety management on criticality, (8) safety of radioactive waste management, and (9) nuclear safeguards.