Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 38

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2020-058, 101 Pages, 2021/02

JAEA-Review-2020-058.pdf:5.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.

JAEA Reports

Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2020-049, 78 Pages, 2021/01

JAEA-Review-2020-049.pdf:5.85MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization" conducted in FY2019.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

Journal Articles

Track3; Robot technology, remote control system

Kawabata, Kuniaki; Osumi, Hisashi*; Onishi, Ken*

Nihon Kikai Gakkai-Shi, 122(1211), p.16 - 17, 2019/10

no abstracts in English

JAEA Reports

Annual report for FY2016 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2016 - March 31, 2017)

Naraha Center for Remote Control Technology Development, Fukushima Research Insitute

JAEA-Review 2018-014, 52 Pages, 2018/12

JAEA-Review-2018-014.pdf:5.62MB

The Naraha Remote Technology Development Center (Naraha Center) consists of a mock-up test building and a research management building, and various test facilities necessary for the decommissioning work after the accident of TEPCO Fukushima Daiichi Nuclear Power Station are installed. Using these test facilities, a wide range of users, such as companies engaged in decommissioning work, research and development institutions, educational institutions, etc., can efficiently develop robots through characterization and performance evaluation of remote-controlled robots. Furthermore, it is possible to make various uses such as exhibitions that many companies have met together, experts' meetings on decommissioning. This report summarizes the activities of the Naraha Center such as development of remote control technologies, maintenance and training of remote control equipment for emergency response, use of component test areas, and so on in FY2016.

Journal Articles

Remote radiation imaging system using a compact $$gamma$$-ray imager mounted on a multicopter drone

Sato, Yuki; Ozawa, Shingo*; Terasaka, Yuta; Kaburagi, Masaaki; Tanifuji, Yuta; Kawabata, Kuniaki; Miyamura, Hiroko; Izumi, Ryo*; Suzuki, Toshikazu*; Torii, Tatsuo

Journal of Nuclear Science and Technology, 55(1), p.90 - 96, 2018/01

 Times Cited Count:24 Percentile:98.2(Nuclear Science & Technology)

JAEA Reports

The Catalog of solidification and volume reduction technologies for the treatment of radioactive waste generated by the decommissioning of Fukushima Daiichi Nuclear Power Station

Kato, Jun; Nakagawa, Akinori; Taniguchi, Takumi; Sakakibara, Tetsuro; Nakazawa, Osamu; Meguro, Yoshihiro

JAEA-Review 2017-015, 173 Pages, 2017/07

JAEA-Review-2017-015.pdf:6.67MB

Various radioactive wastes have been generated at the Fukushima Daiichi Nuclear Power Station (1F). To dispose of the wastes underground, it is necessary to make a suitable waste package by the volume reduction and solidification of the wastes. To plan the future decommissioning of 1F, it is also necessary to estimate feasibility of existing treatment technology for those wastes. Therefore the document survey has been performed about volume reduction and solidification technologies that have domestic or foreign experiences of practical treatment for radioactive wastes to assist selection of suitable treatment of the wastes. This report shows the arranged results. The 1F wastes are classified into two groups, homogeneous particulate and liquid wastes and heterogeneous solid wastes. The needful items for the feasibility study such as a technology name, a fundamental principle, treatment efficiency, and characteristic of solidified waste are summarized in each group.

Journal Articles

Implementation of decontamination technologies appropriate to Japanese boundary conditions

Kawase, Keiichi

Global Environmental Research (Internet), 20(1&2), p.83 - 90, 2017/03

Major challenges to implementing full-scale environmental decontamination were the absence of real-world examples and also lack of experience in planning and implementing decontamination technology appropriate to the physical and social boundary conditions in both Japan and Fukushima. The Japan Atomic Energy Agency was thus charged with conducting a range of Decontamination Pilot Project to examine the applicability of decontamination technologies, with a special focus on reducing dose rates and thus allowing evacuees to return to re-establish their normal lifestyles as quickly as possible, whilst simultaneously maintaining worker safety. In this report, re-edit the report of the Decontamination Pilot Project (Nakayama et al.,2014), do the commentary for the decontamination technology.

JAEA Reports

Summary of instructor training program in FY2014 aiming at Asian countries introducing nuclear technologies for peaceful use (Contract program)

Hidaka, Akihide; Nakano, Yoshihiro; Watanabe, Yoko; Arai, Nobuyoshi; Sawada, Makoto; Kanaizuka, Seiichi*; Katogi, Aki; Shimada, Mayuka*; Ishikawa, Tomomi*; Ebine, Masako*; et al.

JAEA-Review 2016-011, 208 Pages, 2016/07

JAEA-Review-2016-011-01.pdf:33.85MB
JAEA-Review-2016-011-02.pdf:27.68MB

JAEA has been conducting the Instructor Training Program (ITP) since 1996 under the auspices of MEXT to contribute to human resource development in currently 11 Asian countries in the field of radiation utilization for seeking peaceful use of nuclear energy. ITP consists of Instructor Training Course (ITC), Follow-up Training Course (FTC) and Nuclear Technology Seminars. In the ITP, trainings or seminars relating to technology for nuclear utilization are held in Japan by inviting nuclear related people from Asian countries to Japan and after that, the past trainees are supported during FTC by dispatching Japanese specialists to Asian countries. News Letter is also prepared to provide the broad range of information obtained through the trainings for local people near NPPs in Japan. The present report describes the activities of FY2014 ITP and future challenges for improving ITP more effectively.

Journal Articles

Outlines of JAEA'S instructor training program and future prospects

Hidaka, Akihide; Nakamura, Kazuyuki; Watanabe, Yoko; Yabuuchi, Yukiko; Arai, Nobuyoshi; Sawada, Makoto; Yamashita, Kiyonobu; Sawai, Tomotsugu; Murakami, Hiroyuki

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 9 Pages, 2015/05

Journal Articles

Nuclear technology and potential ripple effect of superconducting magnets for fusion power plant

Nishimura, Arata*; Muroga, Takeo*; Takeuchi, Takao*; Nishitani, Takeo; Morioka, Atsuhiko

Fusion Engineering and Design, 81(8-14), p.1675 - 1681, 2006/02

 Times Cited Count:3 Percentile:25.6(Nuclear Science & Technology)

In a fusion reactor plant, a neutral beam injector (NBI) will be operated for a long time, and it will allow neutron streaming from NBI ports to outside of the plasma vacuum vessel. It requires the superconducting magnet to develop nuclear technology to produce stable magnetic field and to reduce activation of the magnet components. In this report, the back ground of the necessity and the contents of the nuclear technology of the superconducting magnets for fusion application are discussed and some typical investigation results are presented, which are the neutron irradiation effect on Nb$$_{3}$$Sn wire, the development of low activation superconducting wire, and the design concept to reduce nuclear heating and nuclear transformation by streaming. In addition, recent activities in high energy particle physics are introduced and potential ripple effect of the technology of the superconducting magnets is described briefly.

JAEA Reports

Annual report of Nuclear Technology and Education Center; April 1, 2004-March 31, 2005

Nuclear Technology and Education Center

JAERI-Review 2005-033, 85 Pages, 2005/09

JAERI-Review-2005-033.pdf:7.03MB

This annual report summarizes the activities of Nuclear Technology and Education Center (NuTEC) of Japan Atomic Energy Research Institute (JAERI) in the fiscal year 2004. It describes not only the domestic and the international training activities, but also the technical development for the training courses and administrative matters. The period being the second fiscal year after the unification of Tokyo and Tokai Education Center, all the planned training courses have been finished successfully, and the number of trainees completing the courses was 1165. In addition, preparative work has been performed in oder to cooperate with Nuclear Professional School, School of Engineering, the University of Tokyo. Futher, the maintenance and improvement of facilities and equipments for education have been made from the viewpoint of securing safety and comfortable working environment.

Journal Articles

The HTTR project as the world leader of HTGR research and development

Shiozawa, Shusaku; Komori, Yoshihiro; Ogawa, Masuro

Nihon Genshiryoku Gakkai-Shi, 47(5), p.342 - 349, 2005/05

For the purpose to extend high temperature nuclear heat application, JAERI constructed the HTTR, High Temperature Engineering Test Reactor, and has carried out research and development of high temperature gas cooled reactor system aiming at high efficiency power generation and hydrogen production. This paper explains the history, main results, present status of research and development of HTTR project, international cooperation of research and development of HTGR and future plan aiming at development of Japanese original future HTGR-Hydrogen production system. This paper includes results from the study, which is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan.

JAEA Reports

Verification of HTTR hydrogen production system analysis code using experimental data of mock-up model test facility with a full-scale reaction tube; Cooling system of the secondary helium gas using steam generator and radiator (Contract research)

Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Maeda, Yukimasa; Takeda, Tetsuaki; Nishihara, Tetsuo; Inagaki, Yoshiyuki

JAERI-Tech 2005-014, 89 Pages, 2005/03

JAERI-Tech-2005-014.pdf:7.25MB

In a hydrogen production system using HTTR, it is required to control a secondary helium gas temperature within an allowable value at an intermediate heat exchanger (IHX) inlet to prevent a reactor scram. To mitigate thermal disturbance of the secondary helium gas caused by the hydrogen production system, a cooling system of the secondary helium gas using a steam generator(SG) and a radiator will be installed at the downstream of the chemical reactor. In order to verify a numerical analysis code of the cooling system, numerical analysis has been conducted. The pressure controllability in SG is highly affected by the heat transfer characteristics of air which flows outside of the heat exchanger tube of the radiator. In order to verify a numerical analysis code of the cooling system, the heat transfer characteristics of air has been investigated with experimental results of a mock-up model test. It was confirmed that numerical analysis results were agreed well with experimental results, and the analysis code was successfully verified.

JAEA Reports

Report of the summative evaluation by the Advisory Committee on Research and Development of Nuclear Energy Technology

Research Evaluation Committee

JAERI-Review 2005-015, 30 Pages, 2005/03

JAERI-Review-2005-015.pdf:3.44MB

no abstracts in English

JAEA Reports

NuTEC annual report; April l, 2001 - March 31, 2002

Nuclear Technology and Education Center

JAERI-Review 2003-003, 81 Pages, 2003/05

JAERI-Review-2003-003.pdf:3.48MB

This report summarizes the educational activities and related management of the Nuclear Technology andEducation Center (NuTEC) during the 2001 fiscal year. Both Tokyo and Tokai Education Centers have successfully conducted almost all the planned domestic and international training courses. In addition Tokai Education Center has performed the 3nd nuclear supervisor training course and introduced a new course for special nuclear emergency preparedness in response to the legal amendment after the criticality accident. The sum total number of participants was 1,310. The International Technology Transfer Division has not only planned and organized the international training courses, but also taken charge of the 3nd workshop on Human Resource Development in Nuclear Field in Asian and Pasific Region. Various researches have been made to improve the educational program.

Journal Articles

Economic scale of utilization of radiation in Japan

Yanagisawa, Kazuaki; Kume, Tamikazu; Makuuchi, Keizo

Radioisotopes, 50(11), p.581 - 590, 2001/11

no abstracts in English

JAEA Reports

NuTEC annual report; April 1, 2000 - March 31, 2001

Nuclear Technology and Education Center

JAERI-Review 2001-031, 80 Pages, 2001/10

JAERI-Review-2001-031.pdf:12.76MB

no abstracts in English

JAEA Reports

NuTEC annual report; April 1, 1999 - March 31, 2000

Nuclear Technology and Education Center

JAERI-Review 2000-026, 80 Pages, 2000/11

JAERI-Review-2000-026.pdf:11.4MB

no abstracts in English

JAEA Reports

Proceedings of the Symposium on the Joint Research Project between JAERI and Universities; Status and Perspective of the Advanced Radiation Technology Project, January 27, 1999, National Education Center, Tokyo, Japan

Committee for the Joint Research Project on the Advanced Radiation Technology; Committee for the Collaborative Research on the Advanced Radiation Technology

JAERI-Conf 2000-008, 113 Pages, 2000/06

JAERI-Conf-2000-008.pdf:11.5MB

no abstracts in English

38 (Records 1-20 displayed on this page)