Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Study on the evaluation method of radioactivity for dismantling wastes generated from test and research reactors using ORIGEN attached to SCALE6.2.4

Tomioka, Dai; Kochiyama, Mami; Ozone, Kenji; Nakata, Hisakazu; Sakai, Akihiro

JAEA-Technology 2024-023, 38 Pages, 2025/03

JAEA-Technology-2024-023.pdf:1.54MB

Japan Atomic Energy Agency is an implementing organization of near-surface disposal for low-level radioactive wastes generated from research, industrial and medical facilities in Japan. Information on the radioactivity concentration of these radioactive wastes is dispensable for the design and conformity assessment of the waste disposal facilities for the licensing application of the disposal project and its safety review. Radioactive Wastes Disposal Center has been improving the radioactivity evaluation procedure for the dismantling waste generated from the research reactors based on the activation calculation. In order to investigate the applicability of the ORIGEN code (included in SCALE6.2.4), which enables more accurate activation calculations using multigroup neutron spectra, we performed activation calculations with the ORIGEN-code and the ORIGEN-S code (included in SCALE6.0), which has been widely used in the past, for the dismantled wastes from the Rikkyo University Research Reactor, where radioactivity analysis data for the structural materials around the reactor core were compiled. As a result, the calculation time difference between ORIGEN and ORIGEN-S was small and the evaluated radioactivity concentrations of the former were in the range of 0.8-1.0 times those of the latter, which was in good agreement with those of radiochemical analysis in the range of 0.5-3.0 times. The applicability of ORIGEN was confirmed. In addition, activation calculations assuming trace elements in structural materials of nuclear reactor were performed with ORIGEN and ORIGEN-S and the results were compared. The causes of the large differences among 170 nuclides that are important for dose assessment in near-surface disposal were assessed each nuclide.

Journal Articles

Generation and verification of ORIGEN and ORIGEN-S activation cross-section libraries of JENDL-5 and JENDL/AD-2017

Konno, Chikara; Kochiyama, Mami; Hayashi, Hirokazu

Mechanical Engineering Journal (Internet), 11(2), p.23-00386_1 - 23-00386_11, 2024/04

Activation cross-section libraries for the ORIGEN and ORIGEN-S codes have been generated from JENDL-5 and JENDL/AD-2017. The ORIGEN activation cross-section libraries of the 200 and 48 group structures were generated with the AMPX-6 code, while the ORIGEN-S activation cross-section libraries with a MAXS format of the 199 group structure were done with the PREPO2018 code. Activation calculations for JPDR were carried out in order to validate the produced ORIGEN and ORIGEN-S activation cross-section libraries. The following comparisons were performed: the ORIGEN calculation results with the produced activation cross-section libraries and bundled ones, the 200 group and 48 group ORIGEN calculations, the ORIGEN and ORIGEN-S calculations with the JENDL-5 activation cross-section libraries, etc. Most of the differences of the calculation results were less than 20%, which demonstrated that the libraries were produced adequately.

Journal Articles

Calculations for radioactivity evaluation of research reactors for near surface disposal and their application methods

Kochiyama, Mami

Kaku Deta Nyusu (Internet), (133), p.76 - 81, 2022/10

The outline of the presentation at the joint session of Research Committee for Nuclear Data and Subcommittee on Nuclear Data in the Atomic Energy Society of Japan 2022 Autumn Meeting was contributed to Nuclear Data News. As part of the study on the near surface disposal of waste from research facilities, we are studying a method for evaluating the radioactivity inventory of waste generated by the dismantling of research reactors. In the radioactivity evaluation of the research reactor, we have investigated the method of calculating the neutron transport in the reactor and using the obtained neutron spectrum to calculate the activation of the internal structure by the ORIGEN-S code. In recent years, we have introduced and evaluated libraries created based on JENDL-4.0 and JENDL/AD-2017, and we will introduce the status of their examination. And we will introduce how to apply the results obtained by the radioactivity evaluation calculation to burial disposal.

JAEA Reports

Study on radioactivity evaluation method of research reactors using DORT and MCNP codes

Kochiyama, Mami; Sakai, Akihiro

JAEA-Technology 2022-009, 56 Pages, 2022/06

JAEA-Technology-2022-009.pdf:4.15MB

It is necessary to evaluate radioactivity inventory in wastes before disposal of low-level radioactive wastes generated from dismantling research reactors. It is efficient for owners of each research reactor to use a common radioactive evaluation method in order to comply with the license application for disposal facility. In this report, neutron transport and activation calculations were carried out for the Rikkyo University research reactor in order to examine a common radioactivity evaluation method for burial disposal of radioactive wastes generated by dismantling. We adopted the neutron transport codes DORT and MCNP and the activation code ORIGEN-S with cross-section libraries based on JENDL-4.0 and JENDL/AD-2017. The radioactivity concentrations obtained by the radiochemical analysis and both calculation codes were in agreement by 0.4 to 3 times. Therefore, by appropriately considering this difference, the radioactivity evaluation method by DORT, MCNP and ORIGEN-S can be applied to the radioactivity evaluation for buried disposal. In order to classify wastes from dismantling by clearance or buried disposal method according to their radioactivity levels, we also created radioactivity concentration distributions in the concrete area and graphite thermal column area.

JAEA Reports

Study on the radioactivity evaluation method of biological shielding concrete of JPDR for near surface disposal

Kochiyama, Mami; Okada, Shota; Sakai, Akihiro

JAEA-Technology 2021-010, 61 Pages, 2021/07

JAEA-Technology-2021-010.pdf:3.56MB
JAEA-Technology-2021-010(errata).pdf:0.75MB

It is necessary to evaluate the radioactivity inventory in wastes in order to dispose of radioactive wastes generated from dismantling nuclear reactor in the shallow ground. In this report, we examined radioactivity evaluation method for near surface disposal about biological shield concrete near the core generated from the dismantling of JPDR. We calculated radioactive concentration of the target biological concrete using the DORT code and the ORIGEN-S code, and we estimated radioactivity concentration Di (Bq/t). For DORT calculation, the cross-section library created from the MATXSLIB-J40 file from JENDL-4.0 was used, and for ORIGEN-S, the attached library of SCALE6.0 was used. As a result of comparing the calculation results of the radioactivity concentration with the past measured values in the radial direction and the vertical direction, we found that the trends were generally the same. We calculated radioactive concentration of the target biological concrete Di (Bq/t), and we compared with the estimated Ci (Bq/t) equivalent to the dose criteria of trench disposal calculated for 140 nuclides. As a result we inferred that the except for about 2% of target waste could be disposed of in the trench disposal facility. We also preselected important nuclides for trench disposal based on the ratios (Di/Ci) for each nuclide, H-3, C-14, Cl-36, Ca-41, Co-60, Sr-90, Eu-152 and Cs-137 were selected as important nuclides.

JAEA Reports

Development of inventory calculation modules using ORIGEN-S for decommissioning

Matsuda, Norihiro; Konno, Chikara; Ikehara, Tadashi; Okumura, Keisuke; Suyama, Kenya*

JAEA-Data/Code 2020-003, 33 Pages, 2020/03

JAEA-Data-Code-2020-003.pdf:1.85MB

Data handling modules for the radioactivity calculation code, ORIGEN-S, are developed for the reliable evaluations of radioactivity inventory. By using these modules, an activation cross-section data library for the ORIGEN-S code is updated easily and effectively based on a facility-specific neutron spectrum and multi-group neutron activation cross-section library for decommissioning of nuclear facilities, MAXS2015. In order to guarantee the reliability of the radioactivity calculations, functions of data verification in a visual way and numerical comparison between before and after the data processing are also prepared.

Oral presentation

Present status of activation cross section data for nuclear reactor decommissioning, 4; Examination status of activation calculation of radioactive waste generated from research reactors for near surface disposal

Kochiyama, Mami; Sakai, Akihiro

no journal, , 

As part of the study on the burial disposal of waste from research facilities, we are studying a method for evaluating the radioactivity inventory of waste generated by the dismantling of research reactors. In the radioactivity evaluation of the research reactor, we have investigated the method of calculating the neutron transport in the reactor and using the obtained neutron spectrum to calculate the activation of the internal structure by the ORIGEN-S code. In recent years, we have introduced and evaluated libraries created based on JENDL-4.0 and JENDL/AD-2017, and we will introduce the status of their examination. And we will introduce how to apply the results obtained by the radioactivity evaluation calculation to burial disposal.

Oral presentation

Toward the near surface disposal of wastes from research facilities; Study of radioactivity evaluation methods for research reactors

Kochiyama, Mami; Tomioka, Dai; Totsuka, Masayoshi*; Nakata, Hisakazu; Sakai, Akihiro

no journal, , 

Japan Atomic Energy Agency is proceeding with plans for the near surface disposal of low-level radioactive waste generated from research institutes and medical institutions in Japan. In order to dispose of the radioactive waste generated by the dismantling of the research reactor, it is necessary to evaluate the radioactivity concentration in the waste. We report on the status of study of radioactivity evaluation methods for dismantling waste generated from research reactors.

Oral presentation

ORIGEN and ORGEN-S activation libraries produced from JENDL-5

Konno, Chikara; Kochiyama, Mami; Hayashi, Hirokazu

no journal, , 

We have produced ORIGEN and ORIGEN-S libraries from JENDL 5 released in 2021 in order to use JENDL 5 in the codes. Analysis results of the JPDR decommissioning data with these libraries were similar to those with the libraries bundled in ORIGEN and ORIGEN-S, which indicated that the produced libraries had no problem

9 (Records 1-9 displayed on this page)
  • 1