Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-022, 59 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2022. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects.
Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato
Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01
Times Cited Count:6 Percentile:77.44(Materials Science, Multidisciplinary)The thermal conductivities of near-stoichiometric (U,Pu,Am)O doped with Nd
O
/Sm
O
, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)
. The dependences of the coefficients A and B on the Nd/Sm content (C
and C
, respectively) are evaluated as: A(mK/W)=1.70
10
+ 0.93C
+ 1.20C
, B(m/W)=2.39
10
.
Kirishima, Akira*; Akiyama, Daisuke*; Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Sasaki, Takayuki*; Sato, Nobuaki*
Journal of Nuclear Materials, 567, p.153842_1 - 153842_15, 2022/08
Times Cited Count:8 Percentile:81.33(Materials Science, Multidisciplinary)To understand the chemical structure and stability of nuclear fuel debris consisting of UO, Zr, and Stainless Steel (SUS) generated by the Fukushima Daiichi Nuclear Power Plant accident in Japan in 2011, simulated debris of the UO
-SUS-Zr system and other fundamental component systems were synthesized and characterized. The simulated debris were synthesized by heat treatment for 1 to 12 h at 1600
C, in inert (Ar) or oxidative (Ar + 2% O
) atmospheres.
Np and
Am tracers were doped for the leaching tests of these elements and U from the simulated debris. The characterization of the simulated debris was conducted by XRD, SEM-EDX, Raman spectroscopy, and M
ssbauer spectroscopy, which provided the major uranium phase of the UO
-SUS-Zr debris was the solid solution of U
O
(s.s.) with Zr(IV) and Fe(II) regardless of the treatment atmosphere. The long-term immersion test of the simulated debris in pure water and that in seawater revealed the macro scale crystal structure of the simulated debris was chemically very stable in the wet condition for a year or more. Furthermore, the leaching test results showed that the actinide leaching ratios of U, Np, Am from the UO
-SUS-Zr debris were very limited and less than 0.08 % for all the experiments in this study.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2022-009, 73 Pages, 2022/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic research on the stability of fuel debris including alloy phase" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study focus on fuel debris consisting of oxide phase and alloy phase generated by the high temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO-SUS system and UO
-Zr(ZrO
)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water.
Yoshida, Naoki; Ono, Takuya; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi
JAEA-Research 2021-011, 12 Pages, 2022/01
In boiling and drying accidents involving high-level liquid waste in fuel reprocessing plants, emphasis is placed on the behavior of ruthenium (Ru). Ru would form volatile species, such as ruthenium tetroxide (RuO), and could be released to the environment with coexisting gases, including nitric acid, water, or nitrogen oxides. In this study, to contribute toward safety evaluations of these types of accidents, the migration behavior of gaseous Ru into the liquid phase has been experimentally measured by simulating the condensate during an accident. The gas absorption of RuO
was enhanced by increasing the nitrous acid (HNO
) concentration in the liquid phase, indicating the occurrence of chemical absorption. In control experiments without HNO
, the lower the temperature, the greater was the Ru recovery ratio in the liquid phase. Conversely, in experiments with HNO
, the higher the temperature, the higher the recovery ratio, suggesting that the reaction involved in chemical absorption was activated at higher temperatures.
Yanagisawa, Hiroshi
JAEA-Technology 2021-023, 190 Pages, 2021/11
Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.
Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi
Nuclear Technology, 207(8), p.1280 - 1289, 2021/08
Times Cited Count:3 Percentile:27.98(Nuclear Science & Technology)Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.
Kakiuchi, Kazuo; Udagawa, Yutaka; Amaya, Masaki
Annals of Nuclear Energy, 155, p.108171_1 - 108171_11, 2021/06
Times Cited Count:2 Percentile:22.08(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2020-032, 97 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase" conducted in FY2019. In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO-SUS system and UO
-Zr(ZrO
)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.
Yoshida, Naoki; Amano, Yuki; Ono, Takuya; Yoshida, Ryoichiro; Abe, Hitoshi
JAEA-Research 2020-014, 33 Pages, 2020/12
Considering the boiling and drying accident of high-level liquid waste in fuel reprocessing plant, Ruthenium (Ru) is an important element. It is because Ru would form volatile compounds such as ruthenium tetroxide (RuO) and could be released into the environment with other coexisting gasses such as nitric oxides (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO
). To contribute to the safety evaluation of this accident, we experimentally evaluated the effect of NOx on the decomposition and chemical change behavior of the gaseous RuO
(RuO
(g)). As a result, the RuO
(g) decomposed over time under the atmospheric gasses with NO or NO
, however, the decomposition rate was slower than the results of experiments without NOx. These results showed that the NOx stabilized RuO
(g).
Udagawa, Yutaka; Fuketa, Toyoshi*
Comprehensive Nuclear Materials, 2nd Edition, Vol.2, p.322 - 338, 2020/08
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2019-035, 61 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase". In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO-SUS system and UO
-Zr(ZrO
)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.
Takamatsu, Yuki*; Ishii, Hiroto*; Oishi, Yuji*; Muta, Hiroaki*; Yamanaka, Shinsuke*; Suzuki, Eriko; Nakajima, Kunihisa; Miwa, Shuhei; Osaka, Masahiko; Kurosaki, Ken*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 17(3/4), p.106 - 110, 2018/12
In order to establish the synthesis method of simulated fuel contacting Cesium (Cs) which is required for the evaluation of physical/chemical characteristics in fuel and release behavior of Cs, sintering tests of the cerium dioxide (CeO) based simulated fuels containing Cesium iodide (CsI) are performed by using spark plasma sintering (SPS) method. The sintered CeO
pellets with homogeneous distribution of several micro meter of CsI spherical precipitates were successfully obtained by optimizing SPS conditions.
Uwaba, Tomoyuki; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*
Nuclear Engineering and Design, 331, p.186 - 193, 2018/05
Times Cited Count:4 Percentile:33.89(Nuclear Science & Technology)A computer code for the analysis of the overall irradiation performance of a fast reactor mixed-oxide (MOX) fuel element was coupled with a specialized code for the analysis of fission product cesium behaviors in a MOX fuel element. The coupled code system allowed for the analysis of the radial and axial Cs migrations, the generation of Cs chemical compounds and fuel swelling due to Cs-fuel-reactions in association with the thermal and mechanical behaviors of the fuel element. The coupled code analysis was applied to the irradiation performance of a fast reactor MOX fuel element attaining high burnup for discussion on the axial distribution of Cs, fuel-to-cladding mechanical interaction owing to the Cs-fuel-reactions by comparing the calculated results with post irradiation examinations.
Yamashita, Shinichiro; Nagase, Fumihisa; Kurata, Masaki; Nozawa, Takashi; Watanabe, Seiichi*; Kirimura, Kazuki*; Kakiuchi, Kazuo*; Kondo, Takao*; Sakamoto, Kan*; Kusagaya, Kazuyuki*; et al.
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09
In Japan, the research and development (R&D) project on accident tolerant fuel and other components (ATFs) of light water reactors (LWRs) has been initiated in 2015 for establishing technical basis of ATFs. The Japan Atomic Energy Agency (JAEA) has coordinated and carried out this ATF R&D project in cooperation with power plant providers, fuel venders and universities for making the best use of the experiences, knowledges in commercial uses of zirconium-base alloys (Zircaloy) in LWRs. ATF candidate materials under consideration in the project are FeCrAl steel strengthened by dispersion of fine oxide particles(FeCrAl-ODS) and silicon carbide (SiC) composite, and are expecting to endure severe accident conditions in the reactor core for a longer period of time than the Zircaloy while maintaining or improving fuel performance during normal operations. In this paper, the progresses of the R&D project are reported.
Yamaji, Akifumi*; Yamasaki, Daiki*; Okada, Tomoya*; Sakamoto, Kan*; Yamashita, Shinichiro
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09
Features of the accident tolerant fuel performance were evaluated with FEMAXI-7 when the current Zircaloy(Zry) cladding is replaced with FeCrAl-ODS steel cladding (a type of oxide dispersion strengthened steel being developed under the Project on Development of Technical Basis for Safety Improvement at Nuclear Power Plants by Ministry of Economy, Trade and Industry (METI) of Japan) for BWR 99 type fuel rod. In particular, influences of the creep strain rate and thickness of the ODS cladding on the fuel temperature, fission gas release rate (FGR) and pellet-cladding mechanical interaction (PCMI) are investigated.
Miwa, Shuhei; Osaka, Masahiko
Journal of Nuclear Materials, 487, p.1 - 4, 2017/04
Times Cited Count:4 Percentile:33.39(Materials Science, Multidisciplinary)Oxidation and reduction behaviors of prototypic MgO-based inert matrix fuels (IMFs) containing PuO were experimentally investigated by means of thermogravimetry. The oxidation and reduction kinetics of the MgO-PuO
specimen were determined. The oxidation and reduction rates of the MgO-PuO
were found to be low compared with those of PuO
. It is note that the changes in O/Pu ratios of MgO-PuO
from stoichiometry were smaller than those of PuO
at high oxygen partial pressure. From these results, it can be said that MgO matrix lower the oxygen supply and release of PuO
, which is preferable as the minor actinides incineration devices, since the high oxygen potentials of minor actinide oxides can cause certain problems in terms of thermochemical aspects such as enlarged cladding inner-surface corrosion.
Sato, Takumi; Shibata, Hiroki; Hayashi, Hirokazu; Takano, Masahide; Kurata, Masaki
Journal of Nuclear Science and Technology, 52(10), p.1253 - 1258, 2015/10
Times Cited Count:7 Percentile:48.07(Nuclear Science & Technology)In order to explore the applicability of the chlorination by MoCl as a potential pretreatment technique for waste treatment of fuel debris by pyrochemical methods, chlorination experiments of UO
and (U
Zr
)O
simulated fuel debris were carried out in two steps: the first one is a chlorination reaction by homogeneous heating, the second one is a volatilization of molybdenum by-product by heating under temperature gradient condition. Most of UO
and (U
Zr
)O
powder were converted to UCl
or UCl
and ZrCl
mixture at 573 K, respectively. In the case of (U
Zr
)O
sintered particle, most of sample was converted to the chlorides because the products evaporated and be separated from sample surface at 773 K, while only the surface of the sample disk was converted to the chlorides at 573 and 673 K. Most of molybdenum by-product and ZrCl
were separated from UCl
by volatilization at 573 K.
Kato, Masato; McClellan, K.*
Transactions of the American Nuclear Society, 113(1), p.613 - 614, 2015/10
A joint study on advanced oxide fuels is being carried out under the Civil Nuclear Energy Working Group (CNWG) bilateral collaboration between the U.S. Department of Energy and the Japan Atomic Energy Agency. The main goal of this study is to support development and validation of a science-based fuel analysis code for minor actinide (MA) bearing MOX fuel. In analysis and evaluation of fuel performance, it is essential to understand the physical properties of the advanced oxide fuels. Therefore, we are investigating physical properties of (U,Pu)O, (U,Ce,)O
, PuO
, CeO
and other related compounds to prepare a physical property database and to construct an integrated mechanistic physical property model. In this paper, we describe the derivation of a model to represent heat capacity and thermal conductivity of (U,Pu)O
that is based on the experimental database.
Motooka, Takafumi; Tsukada, Takashi
Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014) (USB Flash Drive), 9 Pages, 2014/10
In Fukushima Daiichi Nuclear Power Station (1F), seawater was injected into spent fuel pools in March 2011. Zircaloy-2 is adopted for the fuel cladding at 1F. Zirconium alloys including Zircaloy-2 are susceptible to pitting corrosion in oxidizing chloride solutions. In this study, we investigated the effect of oxide film formed during -ray irradiation on pitting corrosion of fuel cladding in water containing sea salt. The pitting potentials of Zircaloy-2 were measured using the water containing artificial sea salt. Changes in the composition of water containing sea salt were analyzed before and after
-ray irradiation. The characteristics of the oxide films formed on Zircaloy-2 were evaluated by X-ray photoelectron spectroscopy. Solution analyses for water containing sea salt showed that hydrogen peroxide was generated by the irradiation. The pitting potential of Ziracloy-2 with oxide film formed under
-ray irradiation was higher than that with oxide film formed without irradiation. X-ray photoelectron spectroscopy indicated that the oxide film was composed of zirconium oxide and the growth of oxide film was enhanced during the irradiation. It could thus be explained that the enhanced growth of oxide film under
-ray irradiation caused the higher pitting potential.