Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 244

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Production rates of long-lived radionuclides $$^{10}$$Be and $$^{26}$$Al under direct muon-induced spallation in granite quartz and its implications for past high-energy cosmic ray fluxes

Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.

Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05

Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as $$^{10}$$Be and $$^{26}$$Al have been accumulating in these rocks, concentrations of $$^{10}$$Be and $$^{26}$$Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced $$^{10}$$Be and $$^{26}$$Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.

Journal Articles

Processing of JENDL-5 photonuclear sublibrary

Konno, Chikara

JAEA-Conf 2023-001, p.143 - 146, 2024/02

I modified NJOY2016.67 to produce photonuclear ACE files which can be used in MCNP6.2 and PHITS3.27 and produced the ACE file of the JENDL-5 photonuclear sub-library. Simple test calculations with the produced ACE file supported that the produced ACE file had no serious problems.

Journal Articles

Simulated performance evaluation of d-Be compact fast neutron source

Nakayama, Shinsuke

Journal of Nuclear Science and Technology, 60(12), p.1447 - 1453, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The d+Be neutron source is a candidate for transportable neutron source for on-site nondestructive inspection of infrastructure facilities such as bridges, tunnels and so on. The applicability of the d+Be neutron source to a transportable fast neutron source is explored by Monte Carlo particle transport simulations with PHITS and JENDL-5. The simulation results show that by increasing the shielding thickness by about 1.5 times, it is possible to realize the d+Be neutron source with the comparable performance to another candidate, the 2.5-MeV p+Li neutron source, at lower beam energy.

Journal Articles

A Terrestrial SER Estimation Methodology Based on Simulation Coupled With One-Time Neutron Irradiation Testing

Abe, Shinichiro; Hashimoto, Masanori*; Liao, W.*; Kato, Takashi*; Asai, Hiroaki*; Shimbo, Kenichi*; Matsuyama, Hideya*; Sato, Tatsuhiko; Kobayashi, Kazutoshi*; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 70(8, Part 1), p.1652 - 1657, 2023/08

 Times Cited Count:0 Percentile:0.01(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by neutrons is a reliability problem for microelectronic devices in the terrestrial environment. Acceleration tests using white neutron beam provide realistic soft error rates (SERs), but only a few facilities can provide white neutron beam in the world. If single-source irradiation applicable to diverse neutron source can be utilized for the evaluation of the SER in the terrestrial environment, it contributes to solve the shortage of beam time. In this study, we investigated the feasibility of the SER estimation in the terrestrial environment by any one of these measured data with the SEU cross sections obtained by PHITS simulation. It was found that the SERs estimated by our proposed method are within a factor of 2.7 of that estimated by the Weibull function. We also investigated the effect of simplification which reduce the computational cost in simulation to the SER estimation.

Journal Articles

Development of correction method for sample density effect on PGA

Maeda, Makoto; Segawa, Mariko; Toh, Yosuke; Endo, Shunsuke; Nakamura, Shoji; Kimura, Atsushi

Journal of Radioanalytical and Nuclear Chemistry, 332(8), p.2995 - 2999, 2023/08

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

Journal Articles

Development of whole-body dose assessment system for carbon ion radiotherapy; RT-PHITS for CIRT

Furuta, Takuya

Isotope News, (787), p.20 - 23, 2023/06

Carbon ion radiotherapy has an advantage over conventional radiotherapy such that its superior dose concentration on the tumor helps to reduce unwanted dose to surrounding normal tissues. Nevertheless, a little dose to normal tissues, which is a potential risk of secondary cancer, is still unavoidable. In the current dose assessment, however, only assessment around target volume is performed for the tumor control and prevention of acute radiation injury of fatal organs. We therefore developed a system called RT-PHITS for CIRT to reproduce the carbon ion radiotherapy including the production and transport of secondary particles based on treatment planning data using PHITS. Using this system, whole-body dose assessment of patients in the past carbon ion radiotherapy can be performed. By comparing the dose assessment to the epidemiologic records of the patients, the relation between dose exposure of non-target organs and incidence of side effects such as secondary cancer will be elucidated.

Journal Articles

Soft errors in semiconductor devices due to environmental radiation; Simulation of soft errors due to environmental radiations

Abe, Shinichiro

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 65(5), p.326 - 330, 2023/05

Non-destructive faults (the so-called soft errors) in microelectronics caused by environmental radiation such as neutrons and muons have been recognized as a serious reliability problem. The number of microelectronics requiring high reliability increases with the growth of the information society. Therefore, it is not realistic to evaluate the soft error rate (SER) of all microelectronics by measurement. Moreover, the evaluation of SER in the pre-manufacturing stage is sometimes required. As a result, the evaluation of SER by simulation become more important. We have developed the soft error simulation method with PHITS code. We have also simulated the neutron- and muon-induced soft errors. These results will be reported in the journal of the Atomic Energy Society of Japan (AESJ) as the explanatory article.

Journal Articles

Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

Journal of Nuclear Science and Technology, 60(4), p.435 - 449, 2023/04

 Times Cited Count:3 Percentile:63.91(Nuclear Science & Technology)

Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small NE213 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e., INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e., JENDL-4.0/HE, implemented in the particle and heavy iontransport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5$$^{circ}$$. Comparing the energy- and angle-integrated spallation neutron yields at energies of $$le$$20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2022-070, 70 Pages, 2023/03

JAEA-Review-2022-070.pdf:5.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...

Journal Articles

Photon dose rate distribution inside and outside a brachytherapy room

Sabri, A. H. A.*; Tajudin, S. M.*; Aziz, M. Z. A.*; Furuta, Takuya

Radiological Physics and Technology, 16(1), p.109 - 117, 2023/03

The spatial distributions of photon dose rates in a brachytherapy room with an Iridium-192 were simulated by using the particle and heavy ion transport code system (PHITS). A geometry of the brachytherapy room with concrete walls and a sliding lead door was reproduced by tracing the existing room in Advanced Medical and Dental Institute at the Universiti Sains Malaysia in Penang. The simulation results were confirmed by comparing to the measured results using a thermoluminescent dosimeter. The simulation study suggested that an additional layer of 3-mm thick lead at the side wall of the entrance will efficiently reduce the dose outside the entrance due to the photons leaked from the edge of the entrance. Simulation with replacing the source with Cobalt-60 was also conducted and revealed the dose level outside the room was too high compared to regulatory value in the current room configuration.

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-027, 85 Pages, 2022/11

JAEA-Review-2022-027.pdf:5.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In this study, ETCC, a gamma-ray imaging system, was modified to be a portable device that can be used in 1F decommissioning project and can operate in high-dose environments. ETCC is the world's first gamma-ray camera capable of complete bijective imaging, the same as an optical camera. Therefore, ETCC can make general quantitative image analysis methods applicable to radiation, …

Journal Articles

Development of PHITSPlugin for Radiation Behavior Calculation

Suzuki, Kenta; Yashiro, Hiroshi*; Kawabata, Kuniaki

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10

Journal Articles

Measurement of nuclide production cross sections for proton-induced reactions on $$^{rm nat}$$Ni and $$^{rm nat}$$Zr at 0.4, 1.3, 2.2, and 3.0 GeV

Takeshita, Hayato*; Meigo, Shinichiro; Matsuda, Hiroki*; Iwamoto, Hiroki; Nakano, Keita; Watanabe, Yukinobu*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 527, p.17 - 27, 2022/09

 Times Cited Count:3 Percentile:63.91(Instruments & Instrumentation)

To improve accuracy of nuclear design of accelerator driven nuclear transmutation systems and so on, nuclide production cross sections on Ni and Zr were measured for GeV energy protons. The measured results were compared with PHITS calculations, JENDL/HE-2007 and so on.

Journal Articles

Development of the DICOM-based Monte Carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy

Furuta, Takuya; Koba, Yusuke*; Hashimoto, Shintaro; Chang, W.*; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Ishikawa, Akihisa*; Sato, Tatsuhiko

Physics in Medicine & Biology, 67(14), p.145002_1 - 145002_15, 2022/07

 Times Cited Count:3 Percentile:56.15(Engineering, Biomedical)

Carbon ion radiotherapy has an advantage over conventional radiotherapy such that its superior dose concentration on the tumor helps to reduce unwanted dose to surrounding normal tissues. Nevertheless, a little dose to normal tissues, which is a potential risk of secondary cancer, is still unavoidable. The Monte Carlo simulation is a good candidate for the tool to assess secondary cancer risk, including the contributions of secondary particles produced by nuclear reactions. We therefore developed a new dose reconstruction system implementing PHITS as the engine. In this system, the PHITS input is automatically created from the DICOM data sets recorded in the treatment planning. The developed system was validated by comparing to experimental dose distribution in water and treatment plan on an anthropomorphic phantom. This system will be used for retrospective studies using the patient data in National Institute for Quantum and Science and Technology.

Journal Articles

Absolute quantification of $$^{137}$$Cs activity in spent nuclear fuel with calculated detector response function

Sato, Shunsuke*; Nauchi, Yasushi*; Hayakawa, Takehito*; Kimura, Yasuhiko; Kashima, Takao*; Futakami, Kazuhiro*; Suyama, Kenya

Journal of Nuclear Science and Technology, 60(6), p.615 - 623, 2022/06

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A new non-destructive method for evaluating $$^{137}$$Cs activity in spent nuclear fuels was proposed and experimentally demonstrated for physical measurements in burnup credit implementation. $$^{137}$$Cs activities were quantified using gamma ray measurements and numerical detector response simulations without reference fuels, in which $$^{137}$$Cs activities are well known. Fuel samples were obtained from a lead use assembly (LUA) irradiated in a commercial pressurized water reactor (PWR) up to 53 GWd/t. Gamma rays emitted from the samples were measured using a bismuth germinate (BGO) scintillation detector through a collimator attached to a hot cell. The detection efficiency of gamma rays with the detector was calculated using the PHITS particle transport calculation code considering the measurement geometry. The relative activities of $$^{134}$$Cs, $$^{137}$$Cs, and $$^{154}$$Eu in the sample were measured with a high-purity germanium (HPGe) detector for more accurate simulations of the detector response for the samples. The absolute efficiency of the detector was calibrated by measuring a standard gamma ray source in another geometry. $$^{137}$$Cs activity in the fuel samples was quantified using the measured count rate and detection efficiency. The quantified $$^{137}$$Cs activities agreed well with those estimated using the MVP-BURN depletion calculation code.

Journal Articles

Estimated isotopic compositions of Yb in enriched $$^{176}$$Yb for producing $$^{177}$$Lu with high radionuclide purity by $$^{176}$$Yb($$d,x$$)$$^{177}$$Lu

Nagai, Yasuki*; Kawabata, Masako*; Hashimoto, Shintaro; Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Motoishi, Shoji*; Saeki, Hideya*; Motomura, Arata*; Minato, Futoshi; Ito, Masatoshi*

Journal of the Physical Society of Japan, 91(4), p.044201_1 - 044201_10, 2022/04

 Times Cited Count:2 Percentile:42.15(Physics, Multidisciplinary)

Recently, $$^{177}$$Lu is considered as one of the most important medical RIs for treating neuroendocrine tumors. A plan to produce $$^{177}$$Lu with high purity by using enriched $$^{176}$$Yb samples with irradiation of deuteron beams in accelerators has been discussed. However, since the other Yb isotopes contained in the Yb sample interacts with deuterons, Lu isotopes other than $$^{177}$$Lu are produced as impurities. Since the purity of $$^{177}$$Lu is important for medical use, a method to evaluate the impurity of Lu has been required. In this study, we proposed a new method to estimate production yields of each Lu isotopes in Yb samples with arbitrary isotopic compositions by using excitation functions of Yb($$d,x$$)Lu reactions and the particle transport calculation code PHITS. The method plays an important role in discussing the isotopic composition of enriched samples to produce high-purity $$^{177}$$Lu using accelerators.

Journal Articles

Nuclide production cross section of $$^{nat}$$Lu target irradiated with 0.4-, 1.3-, 2.2-, and 3.0-GeV protons

Takeshita, Hayato; Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Hiroki; Nakano, Keita; Watanabe, Yukinobu*; Maekawa, Fujio

JAEA-Conf 2021-001, p.207 - 212, 2022/03

Prediction of nuclide production of spallation products by high-energy proton injection plays a fundamental and important role in shielding design of high-intensity proton accelerator facilities such as accelerator driven nuclear transmutation system (ADS). Since the prediction accuracy of the nuclear reaction models used in the production quantity prediction simulation is insufficient, it is necessary to improve the nuclear reaction models. We have measured nuclide production cross sections for various target materials with the aim of acquiring experimental data and improving nuclear reaction models. In this study, 1.3-, 2.2- and 3.0-GeV proton beams were irradiated to $$^{nat}$$Lu target, and nuclide production cross-section data were acquired by the activation method. The measured data were compared with several nuclear reaction models used in Monte Carlo particle transport calculation codes to grasp the current prediction accuracy and to study how the nuclear reaction model could be improved.

Journal Articles

Unified description of the fission probability for highly excited nuclei

Iwamoto, Hiroki

JAEA-Conf 2021-001, p.24 - 29, 2022/03

Various spallation reaction models have been developed for the use of neutronic and shielding design of high-energy accelerator facilities such as J-PARC and ADS. However, their complicated theory for the de-excitation process has made improving their prediction accuracy difficult. In particular, it has been pointed out that the conventional models underestimate the yield of the spallation products produced from the fission reaction. This work has thus aimed to model the probability was described using a simpler, systematic expression, and then confirmed to predict fission cross sections for various incident energies and target nuclei with improved accuracy [1]. In this presentation, we will present the description of our model and research results. [1] H. Iwamoto and S. Meigo, "Unified description of the fission probability for highly excited nuclei", Journal of Nuclear Science and Technology, 56:2, 160-171 (2019).

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2021-049, 67 Pages, 2022/01

JAEA-Review-2021-049.pdf:7.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2020. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, …

244 (Records 1-20 displayed on this page)