Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 83

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Analysis of used BWR fuel assay data with the integrated burnup code system SWAT4.0

Tada, Kenichi; Kikuchi, Takeo*; Sakino, Takao; Suyama, Kenya

Journal of Nuclear Science and Technology, 55(2), p.138 - 150, 2018/02

 Percentile:100(Nuclear Science & Technology)

The criticality safety of the fuel debris in Fukushima Daiichi Nuclear Power Plant is one of the most important issues and the adoption of the burnup credit is desired for the criticality analysis. The assay data of used nuclear fuel irradiated in 2F2 is evaluated to validate SWAT4.0 for BWR fuel burnup problem. The calculation results revealed that number density of many heavy nuclides and FPs showed good agreement with the experimental data except for $$^{235}$$U, $$^{237}$$Np, $$^{238}$$Pu and Sm isotopes. The cause of the difference is assumption of the initial number density and void ratio and overestimation of the capture cross section of $$^{237}$$Np. The C/E-1 values do not depend on the types of fuel rods (UO$$_{2}$$ or UO$$_{2}$$-Gd$$_{2}$$O$$_{3}$$) and it is similar to that for the PWR fuel. These results indicate that SWAT4.0 appropriately analyzes the isotopic composition of the BWR fuel and it has sufficient accuracy to be adopted in the burnup credit evaluation of the fuel debris.

Journal Articles

Application of FE-SEM to the measurement of U, Pu, Am in the irradiated MA-MOX fuel

Sasaki, Shinji; Tanno, Takashi; Maeda, Koji

Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 6 Pages, 2017/00

During irradiation in a fast reactor, the microstructure change of the mixed oxide fuels and the changes of element distributions occur because of a radial temperature gradient. Therefore, it is important to study the irradiation behavior of MA-MOX for advancement of fast reactor fuels. In order to make detailed observations of microstructure and elemental analyses of MA-MOX, irradiated MA-MOX specimens were carried out PIE by using a FE-SEM equipped with WDX. Because fuel samples have high radio activities and emit alpha-particles, the instrument was modified. the instrument was installed in a lead shield box and the control unit was separately located outside the box. The microstructure changes were observed in irradiated MA-MOX specimen. The characteristic X-rays peaks were detected successfully. By measuring the intensities of characteristic X-rays, it was tried quantitative analysis of U, Pu, Am along radial direction of irradiated specimen.

Journal Articles

Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas-cooled reactors

Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.041008_1 - 041008_5, 2016/10

Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs.

JAEA Reports

Criticality safety evaluation for the direct disposal of used nuclear fuel; preparation of data for burnup credit evaluation (Contract research)

Yamamoto, Kento*; Akie, Hiroshi; Suyama, Kenya; Hosoyamada, Ryuji*

JAEA-Technology 2015-019, 110 Pages, 2015/10

JAEA-Technology-2015-019.pdf:3.67MB

In the direct disposal of used nuclear fuel (UNF), criticality safety evaluation is one of the important issues since UNF contains some amount of fissile material. The recent development of higher-enrichment fuel has enhanced the benefit of the application of Burnup Credit. In the present study, the effects of the several parameters on the reactivity of disposal canister model were evaluated for used PWR fuel. The parameters are relevant to the uncertainties of depletion calculation code, irradiation history, and axial and horizontal burnup distribution, which are known to be important effect in the criticality safety evaluation adopting burnup credit. The latest data or methodology was adopted in this evaluation, based on the various latest studies. The appropriate margin of neutron multiplication factor in the criticality safety evaluation for UNF can be determined by adopting the methodology described in the present study.

Journal Articles

Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas cooled reactors

Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs.

Journal Articles

Experiences on research reactors decommissioning in the NSRI of the JAEA

Tachibana, Mitsuo; Kishimoto, Katsumi; Shiraishi, Kunio

International Nuclear Safety Journal (Internet), 3(4), p.16 - 24, 2014/11

Three research reactors were permanently shut down in the Nuclear Science Research Institute (NSRI) of the Japan Atomic Energy Agency (JAEA) as of October 2014. Safe storage or one-piece removal method was applied to decommissioning of these research reactors depending on decommissioning cost and utilization of facilities and so on. Various kinds of data and experiences were obtained through decommissioning of these research reactors. This report shows data and experiences on the research reactors decommissioning in the NSRI of the JAEA.

Journal Articles

Corrections to the $$^{148}$$Nd method of evaluation of burnup for the PIE samples from Mihama-3 and Genkai-1 reactors

Suyama, Kenya; Mochizuki, Hiroki*

Annals of Nuclear Energy, 33(4), p.335 - 342, 2006/03

 Times Cited Count:8 Percentile:43.62(Nuclear Science & Technology)

The value of the burnup is one of the most important parameters of samples taken by post irradiation examination (PIE). In this study, concerning the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken at the Japan Atomic Energy Research Institute, the burnup values of the PIE samples were re-evaluated and the PIE data are re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. This analysis concludes that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected of 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is approximately 1% for PIE samples having the burnup of larger than 30 GWd/t. Comparison between calculation results using a single pin cell model and an assembly model is carried out. Because the both results agreed within a few percents, we concluded that the single pin cell model is suitable for the analysis of PIE samples and the underestimation of plutonium isotopes does not result from the geometry model.

Journal Articles

Effect of neutron induced reactions of neodymium-147 and 148 on burnup evaluation

Suyama, Kenya; Mochizuki, Hiroki*

Journal of Nuclear Science and Technology, 42(7), p.661 - 669, 2005/07

 Times Cited Count:14 Percentile:26.59(Nuclear Science & Technology)

Burnup is important value for criticality safety evaluation of spent nuclear fuel. Nd-148 method is one of most important method to evaluate the burnup of post irradiation examination (PIE) samples, and well known that it has good accuracy. However, the evaluated burnup values could be perturbed by the neutron capture reaction of Nd-147 and Nd-148. And in the analysis of PIE data from PWR, the calculation results of Nd-148 have approximately more than 1% deviation from experiment. In this study, the contribution of neutron capture reaction of Nd-147 and Nd-148 to Nd-148 amount are discussed. Especially for Nd-147 contribution, it is shown that the current evaluated cross section of Nd-147 is not supported and the new evaluation is consistent with the analysis of PIE data. Possible perturbed amount of Nd-148 by both reactions is less than 0.7% for normal reactor operation condition, and it is approximately 0.1% for 30 GWd/t (BWR) and 40 GWd/t (PWR). Finally, we confirm again that Nd-148 method is good evaluation method.

Journal Articles

Nondestructive observation of nuclear fuels and materials by using neutron radiography

Yasuda, Ryo; Matsubayashi, Masahito; Nakata, Masahito; Matsue, Hideaki; Nakanishi, Tomoko

Dai-5-Kai Hoshasen Ni Yoru Hihakai Hyoka Shimpojiumu Koen Rombunshu, p.31 - 34, 2005/02

Neutron radiography is an effectively nondestructive tool for inspection of irradiated nuclear fuels and materials. Neutron CT an neutron imaging plate methods, which are advanced techniques in the neutron radiography, enabled to obtain cross-section images and to evaluate an amount of the element compositions. This paper describes results of those methods using unirradiated fuels and materials and discussed the practicability of those methods to irradiated fuels and materials.

JAEA Reports

Study on the prediction accuracy of nuclide generation and depletion with JENDL

Okumura, Keisuke; Oki, Shigeo*; Yamamoto, Munenari*; Matsumoto, Hideki*; Ando, Yoshihira*; Tsujimoto, Kazufumi; Sasahara, Akihiro*; Katakura, Junichi; Matsumura, Tetsuo*; Aoyama, Takafumi*; et al.

JAERI-Research 2004-025, 154 Pages, 2005/01

JAERI-Research-2004-025.pdf:19.46MB

This report summarizes the activity (FY2000-2003) of Working Group (WG) on Evaluation of Nuclide Generation and Depletion under Subcommittee on Nuclear Fuel Cycle of Japanese Nuclear Data Committee. In the WG, analyses of Post Irradiation Examinations have been carried out for UO$$_{2}$$ and MOX fuels irradiated in PWRs, BWRs and FBRs, and for actinide samples irradiated in fast reactors, by using ORIGEN or more detailed calculation codes with their libraries based on JENDL-3.2, JENDL-3.3 and other foreign nuclear data files. From these results, current prediction accuracy and problems for evaluation of nuclide generation and depletion are discussed. Furthermore, this report covers other products of our activity; development of the ORIGEN libraries for PWR, BWR and FBR based on JENDL-3.3, study on introduction of neutron spectrum index to ORIGEN calculations, and results of questionnaire survey on desirable accuracy of ORIGEN calculations.

Journal Articles

Development of test techniques for in-pile SCC initiation and growth tests and the current status of in-pile testing at JMTR

Ugachi, Hirokazu; Kaji, Yoshiyuki; Nakano, Junichi*; Matsui, Yoshinori; Kawamata, Kazuo; Tsukada, Takashi; Nagata, Nobuaki*; Dozaki, Koji*; Takiguchi, Hideki*

Proceedings of 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (CD-ROM), p.319 - 325, 2005/00

Irradiation assisted stress corrosion cracking (IASCC) is one of the critical concerns when stainless steel components have been in service in light water reactors (LWRs) for a long period. In the research field of IASCC, mainly PIEs for irradiated materials have been carried out, because there are many difficulties on SCC tests under neutron irradiation. Hence as a part of the key techniques for in-pile SCC tests, we have embarked on a development of the test technique to obtain information concerning effects of applied stress level, water chemistry, irradiation conditions, etc. In this conference, we describe the developed several techniques, especially control of loading on specimens, monitoring technique of crack initiation, propagation and water chemistry, and the current status of in-pile SCC tests using thermally sensitized materials at JMTR.

JAEA Reports

Behavior of irradiated PWR fuel under simulated RIA conditions; Results of the NSRR tests GK-1 and GK-2

Sasajima, Hideo; Sugiyama, Tomoyuki; Nakamura, Takehiko*; Fuketa, Toyoshi

JAERI-Research 2004-022, 113 Pages, 2004/12

JAERI-Research-2004-022.pdf:47.48MB

Results from power burst tests, GK-1 and GK-2, conducted at the NSRR, are summarized. The tests were performed on a 14$$times$$14 PWR fuel rod irradiated to a burnup of 42 MWd/kgU in the Genkai unit #1 of Kyushu Electric Power Co., Inc. The instrumented test fuel rod in a double-container-type capsule was subjected to the pulse-irradiation with stagnant water cooling condition at 0.1 MPa and 293 K. Deposited energy and peak fuel enthalpy were 505 J/g and 389 J/g in the Test GK-1, and 490 J/g and 377 J/g in the Test GK-2, respectively. During the pulse-irradiations, DNB occurred and the cladding surface temperature reached 581 K and 569 K in the Tests GK-1 and -2, respectively. The maximum cladding hoop strain was 2.7% in the Test GK-1 and 1.2% in the Test GK-2. However, the test fuel rods did not fail. Estimated fission gas releases during the pulse-irradiations were 11.7% and 7.0% in the Tests GK-1 and -2, respectively.

Journal Articles

Analysis of benchmark results for reactor physics of LWR next generation fuels

Kitada, Takanori*; Okumura, Keisuke; Unesaki, Hironobu*; Saji, Etsuro*

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 8 Pages, 2004/04

Burnup calculation benchmark has been carried out for the LWR next generation fuels aiming at high burnup up to 70 GWd/t with UO$$_{2}$$ and MOX. Based on the submitted results by many benchmark participants, the present status of calculation accuracy has been confirmed for reactor physics parameters of the LWR next generation fuels, and the factors causing the calculation differences were analyzed in detail. Moreover, the future experiments and research subjects necessary to reduce the calculation differences were discussed and proposed.

Journal Articles

Post-irradiation tensile and fatigue experiment in JPCA

Kikuchi, Kenji; Saito, Shigeru; Nishino, Yasuharu; Usami, Koji

Proceedings of 6th International Meeting on Nuclear Applications of Accelerator Technology (AccApp '03), p.874 - 880, 2004/00

Specimens irradiated at SINQ were tested by tensile and fatigue. Speciemns were irradiated by 580MeV proton beams under spallation reaction during two years, transported to JAERI and tested at JAERI Hot Cell. Material is JPCA austenitic stainless steel. Strain-to-necking is over 8% at 250$$^{circ}$$C test temperature and are different from APT handbook database. Fatigue test was conducted at low stress regime of high cycle fatigue. The number of cycles to failure is reduced by factors five to ten. These data will help a design of spallation target in JPARC.

Journal Articles

Main results of static and dynamic corrosion tests in oxygen-saturated liquid lead-bismuth

Kurata, Yuji; Kikuchi, Kenji; Saito, Shigeru; Futakawa, Masatoshi; Sasa, Toshinobu

FZKA-6876, p.190 - 198, 2003/12

A report at MEGAPIE(Megawatt Pilot Experiment) Technical R & D Meeting is collected into an FZK report. According to the static corrosion tests, Al surface-treated layer produced by the gas diffusion method exhabited corrosion resistance to liquid Pb-Bi, while Al surface-treated layer produced by the melt dipping method suffered a severe corrosion attack. Furtheremore, it was found that a thick ferrite layer was formed in the surface of austenitic stainless steel at 550$$^{circ}$$C. Dissolution at high temperature parts, precipitation of Fe-Cr alloy and deposition of PbO at low temperature parts occured in the first loop corrosion test. These caused plugging of the narrow passage in electro-magnetic pumu(EMP) system. Adoption of filters and a wide passage in an EMP system, and the use of an inner-polished tube specimen brought about a good effect.

Journal Articles

Triple ion beam irradiation tests on window materials of spallation targets

Futakawa, Masatoshi; Kurata, Yuji; Henry, J.*; Ioka, Ikuo; Saito, Shigeru; Naito, Akira

FZKA-6876, p.166 - 171, 2003/12

A report at MEGAPIE(Megawatt Pilot Experiment) Technical R & D Meeting is collected into an FZK report. Triple ion beam irradiation tests on T91 specimens were conducted under MEGAPIE condition using TIARA facility at JAERI. Results of triple ion beam irradiation up to 15dpa, 1400appm He, 10000appm H at 320$$^{circ}$$C were compared with those of single or dual beam irradiation of Fe or He ions by use of a micro-indentation method. Hardsness increase was mainly attributed to displacement damage by Fe ions. A little effect on hardness was found on simultaneous implantation of He and H ions. An analysis method to predict mechanical characterization form micro-indentation test results was developed on ion irradiated materials.

JAEA Reports

Chaotic behavior in a system simulating the pressure balanced injection system; Analysis of passive safety reactor behavior, JAERI's nuclear research promotion program, H12-012 (Contract research)

Madarame, Haruki*; Okamoto, Koji*; Tanaka, Gentaro*; Morimoto, Yuichiro*; Sato, Akira*; Kondo, Masaya

JAERI-Tech 2003-017, 156 Pages, 2003/03

JAERI-Tech-2003-017.pdf:5.31MB

no abstracts in English

JAEA Reports

Annual report of JMTR, No.16, FY2001; April 1, 2001 - March 31, 2002

Department of JMTR

JAERI-Review 2003-009, 96 Pages, 2003/03

JAERI-Review-2003-009.pdf:10.93MB

During the FY2001 (April 2001 to March 2002), the JMTR (Japan Materials Testing Reactor) was operated in 5 operation cycles (113 days) for irradiation studies on the IASCC of the LWR materials, development of fusion blanket materials, radioisotope productions, and so on. The total number of capsules and hydraulic rabbits irradiated were 105 and 59, respectively. Technology development programs were conducted in the following fields. As concerning to the IASCC studies, an advanced water control system and saturation temperature capsulesモ were developed and installed in the JMTR, and the performance tests were carried out. Also a crack growth testing device for irradiated specimens was developed and installed in the hot laboratories. An efficient recycle process of $$^{6}$$Li was developed for the production of pebble type tritium breeder material, and the properties of beryllides were examined, both for the development of fusion reactor blanket. This report summarizes these activities performed in the department of JMTR during the FY2001.

JAEA Reports

Post irradiation examination of (U,Pu)C and (U,Pu)N fuels for fast reactors; Destructive examination result of the fuel pins (Joint research)

Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Nagashima, Hisao; Kimura, Yasuhiko; Matsui, Hiroki; Arai, Yasuo

JAERI-Research 2002-038, 69 Pages, 2003/01

JAERI-Research-2002-038.pdf:12.46MB

Uranium-plutonium mixed carbide and nitiride fuel pins were fabricated in JAERI and irradiated at fast test rector JOYO based on the JAERI-JNC joint research program. The results of non-destructive and destructive post irradiation examinations cariied out at JNC were reported elsewhere. This report summarizes the results of destructive post irradiation examinations of (U,Pu)C and (U,Pu)N fuel pins carried out at JAERI.

Journal Articles

In situ EXAFS study on GeS$$_{2}$$ glass under high-pressure

Miyauchi, Koichi*; Qiu, J.*; Shojiya, Masanori*; Kawamoto, Yoji*; Kitamura, Naoyuki*; Fukumi, Kohei*; Katayama, Yoshinori; Nishihata, Yasuo

Solid State Communications, 124(5-6), p.189 - 193, 2002/10

 Times Cited Count:5 Percentile:66.36

A GeS$$_{2}$$ glass was compressed up to 8 GPa at room temperature, heated up to 270 $$^{circ}$$C under 8 GPa and then decompressed to ambient pressure at room temperature, using a large volume high-pressure apparatus. The local structural-changes around Ge were examined by means of EXAFS method. The Ge-S bond length became monotonously short with increasing applied-pressure up to 8 GPa at room temperature. When the specimen was heated to 270 $$^{circ}$$C under 8 GPa, however, the vond length became slightly long. The elongated bond lengthe was almost kept even after the temperature was descended to room tempertature. In decompression process, the bond length became gradually long with releasing applied-pressure down to 2 GPa, following a change in compression process. Below 2 GPa, however, the Ge-S bond length was largely elongated, being lnger than the initial one. No significant change of coordination number was found in the compression and decompression processes up to 8 GPa. This change canbe explained by a combined effect of elastic and inelastic structural-changes.

83 (Records 1-20 displayed on this page)