Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 229

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-03; 0.2% pressure vessel bottom break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2024-014, 76 Pages, 2024/12

JAEA-Data-Code-2024-014.pdf:4.0MB

An experiment denoted as SB-PV-03 was conducted on November 19, 2002 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-03 simulated a 0.2% pressure vessel bottom small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system of emergency core cooling system (ECCS) and noncondensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. Secondary-side depressurization of both steam generators (SGs) as an accident management (AM) action to achieve the depressurization rate of 55 K/h in the primary system was initiated 10 min after the generation of a safety injection signal, and continued afterwards. Auxiliary feedwater injection into the secondary-side of both SGs was started for 30 min with some delay after the onset of the AM action. The AM action was effective on the primary depressurization until the ACC tanks began to discharge nitrogen gas into the primary system. The core liquid level recovered in oscillative manner because of intermittent coolant injection from the ACC system into both cold legs. Therefore, the core liquid level remained at a small drop. The pressure difference between the primary and SG secondary sides became larger after nitrogen gas ingress. Core uncovery occurred by core boil-off during reflux condensation in the SG U-tubes under nitrogen gas influx. When the maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 908 K, the core power was automatically reduced to protect the LSTF core. After the automatic core power reduction, coolant injection from low pressure injection (LPI) system of ECCS into both cold legs led to the whole core quench. After the continuous core cooling was confirmed through the actuation of the LPI system, the experiment was terminated.

JAEA Reports

Data report of ROSA/LSTF experiment TR-LF-15; Accident management actions during station blackout transient with pump seal LOCA

Takeda, Takeshi

JAEA-Data/Code 2023-012, 75 Pages, 2023/10

JAEA-Data-Code-2023-012.pdf:4.45MB

An experiment denoted as TR-LF-15 was conducted on June 11, 2014 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment TR-LF-15 simulated accident management (AM) actions during a station blackout transient with TMLB' scenario with pump seal loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). This scenario is featured by loss of auxiliary feedwater functions. The pump seal LOCA was simulated by a 0.1% cold leg break. The test assumptions included total failure of both high pressure injection system and low pressure injection system of emergency core cooling system (ECCS). Also, it was presumed non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. When steam generator (SG) secondary-side collapsed liquid level dropped to a certain low liquid level, the primary pressure turned to rise. After the SG secondary-side became voided, the safety valve of a pressurizer cyclically opened which led to loss of primary coolant. Core uncovery thus took place owing to core boil-off at high pressure. When an increase of 10 K was confirmed in cladding surface temperature of simulated fuel rods, SG secondary-side depressurization was started as the first AM action. At that time, the safety valves in both SGs were fully opened. Primary depressurization was initiated by completely opening the pressurizer safety valve as the second AM action with some delay after the first AM action onset. When the SG secondary-side pressure lowered to 1.0 MPa following the first AM action, water was injected into the secondary-side of both SGs via feedwater lines with low-head pumps as the third AM action. A reduction in the primary pressure was accelerated because the heat removal from the SG secondary-side system resumed shortly after the third AM action initiation.

JAEA Reports

Data report of ROSA/LSTF experiment IB-HL-01; 17% hot leg intermediate break LOCA with totally-failed high pressure injection system

Takeda, Takeshi

JAEA-Data/Code 2023-007, 72 Pages, 2023/07

JAEA-Data-Code-2023-007.pdf:3.24MB

An experiment denoted as IB-HL-01 was conducted on November 19, 2009 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment IB-HL-01 simulated a 17% hot leg intermediate break loss-of-coolant accident due to a double-ended guillotine break of pressurizer surge line in a pressurized water reactor (PWR). The break was simulated by a long nozzle upwardly mounted flush with a hot leg inner surface. The test assumptions included total failure of both high pressure injection system of emergency core cooling system (ECCS) and auxiliary feedwater system. In the experiment, relatively large size of break led to a fast transient of phenomena. The primary pressure steeply dropped after the break, and became lower than steam generator (SG) secondary-side pressure. Break flow turned from single-phase flow to two-phase flow soon after the break. Core uncovery started simultaneously with liquid level drop in downflow-side of crossover leg before loop seal clearing (LSC). The LSC was induced in both loops by steam condensation on accumulator (ACC) coolant of ECCS injected into cold legs. The whole core was quenched owing to the rapid recovery in the core liquid level after the LSC. Peak cladding temperature of simulated fuel rods was detected almost concurrently with the LSC. During the ACC coolant injection, liquid levels recovered in the hot legs and SG inlet plena because of liquid entrainment from the hot leg into the SG inlet plenum by high-velocity steam flow. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment IB-HL-01.

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-09; 1.9% pressure vessel top small break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2021-006, 61 Pages, 2021/04

JAEA-Data-Code-2021-006.pdf:2.78MB

An experiment denoted as SB-PV-09 was conducted on November 17, 2005 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-09 simulated a 1.9% pressure vessel top small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). In the experiment, liquid level in the upper-head was found to control break flow rate. When maximum core exit temperature reached 623 K, steam generator (SG) secondary-side depressurization was initiated by fully opening the relief valves in both SGs as an accident management (AM) action. The AM action, however, was ineffective on the primary depressurization until the SG secondary-side pressure decreased to the primary pressure. Meanwhile, the core power was automatically reduced when maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 958 K to protect the LSTF core due to late and slow response of core exit temperature. After the automatic core power reduction, loop seal clearing (LSC) was induced in both loops by steam condensation on the ACC coolant injected into cold legs. The whole core was quenched because of core recovery after the LSC. After the ACC tanks started to discharge nitrogen gas, the pressure difference between the primary and SG secondary sides became larger. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-PV-09.

Journal Articles

Major outcomes through recent ROSA/LSTF experiments and future plans

Takeda, Takeshi; Wada, Yuki; Shibamoto, Yasuteru

World Journal of Nuclear Science and Technology, 11(1), p.17 - 42, 2021/01

Journal Articles

Analyses of LSTF experiment and PWR plant for 5% cold-leg break loss of coolant accident

Watanabe, Tadashi*; Ishigaki, Masahiro*; Katsuyama, Jinya

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 9 Pages, 2018/10

The analyses of LSTF experiment and PWR plant for 5% cold-leg break LOCA are performed using the RELAP5/MOD3.3 code. The discharge coefficient of critical flow model is determined so as to obtain the agreement of pressure transient between the LSTF experiment and the experimental analysis, and used for the PWR analysis. The characteristics of thermal-hydraulic phenomena in the experiment are shown to be simulated well by the two analyses. The decrease in core differential pressure during the loop-seal clearing is, however, underestimated by the two analyses, and the core heat up is not predicted. The loop flow rates are also underestimated by the two analyses. Although the duration of core heat up during the boil-off period is longer in the experimental analysis, the results of two analyses agree well, and the effect of scaling is found to be small between the experimental analysis and the PWR analysis.

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-07; 1% Pressure vessel top break LOCA with accident management actions and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2018-003, 60 Pages, 2018/03

JAEA-Data-Code-2018-003.pdf:3.68MB

Experiment SB-PV-07 was conducted on June 9, 2005 using LSTF. Experiment simulated 1% pressure vessel top small-break LOCA in PWR under total failure of HPI system and nitrogen gas inflow to primary system from ACC tanks. Liquid level in upper-head was found to control break flow rate. Coolant was started to manually inject from HPI system into cold legs as first accident management (AM) action when maximum core exit temperature reached 623 K. Fuel rod surface temperature largely increased because of late and slow response of core exit temperature. SG secondary-side depressurization was initiated by fully opening relief valves as second AM action when primary pressure decreased to 4 MPa. However, second AM action was not effective on primary depressurization until SG secondary-side pressure decreased to primary pressure. Pressure difference became larger between primary and SG secondary sides after ACC tanks started to discharge nitrogen gas.

Journal Articles

ROSA/LSTF test and RELAP5 analyses on PWR cold leg small-break LOCA with accident management measure and PKL counterpart test

Takeda, Takeshi; Otsu, Iwao

Nuclear Engineering and Technology, 49(5), p.928 - 940, 2017/08

 Times Cited Count:5 Percentile:39.65(Nuclear Science & Technology)

JAEA Reports

Data report of ROSA/LSTF experiment SB-HL-12; 1% Hot leg break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2015-022, 58 Pages, 2016/01

JAEA-Data-Code-2015-022.pdf:3.31MB

The SB-HL-12 test simulated PWR 1% hot leg SBLOCA under assumptions of total failure of HPI system and non-condensable gas (nitrogen gas) inflow. SG depressurization by fully opening relief valves in both SGs as AM action was initiated immediately after maximum fuel rod surface temperature reached 600 K. After AM action due to first core uncovery by core boil-off, the primary pressure decreased, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before LSC induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after nitrogen gas inflow. Third core uncovery by core boil-off occurred during reflux condensation. The maximum fuel rod surface temperature exceeded 908 K.

Journal Articles

RELAP5 code study of ROSA/LSTF experiments on PWR safety system using steam generator secondary-side depressurization

Takeda, Takeshi; Onuki, Akira*; Nishi, Hiroaki*

Journal of Energy and Power Engineering, 9(5), p.426 - 442, 2015/05

Journal Articles

RELAP5 code study of ROSA/LSTF validation tests for PWR safety system using SG secondary-side depressurization

Takeda, Takeshi; Onuki, Akira*; Nishi, Hiroaki*

Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 13 Pages, 2014/12

JAEA Reports

Data report of ROSA/LSTF experiment SB-CL-32; 1% cold leg break LOCA with SG depressurization and no gas inflow

Takeda, Takeshi

JAEA-Data/Code 2014-021, 59 Pages, 2014/11

JAEA-Data-Code-2014-021.pdf:5.16MB

Experiment SB-CL-32 was conducted on May 28, 1996 using the LSTF. The experiment SB-CL-32 simulated 1% cold leg small-break LOCA in PWR under assumptions of total failure of HPI system and no inflow of non-condensable gas from ACC tanks. Secondary-side depressurization of both SGs as AM action to achieve the depressurization rate of 200 K/h in the primary system was initiated 10 min after break. Core uncovery started with liquid level drop in crossover leg downflow-side. The core liquid level recovered rapidly after first LSC. The surface temperature of simulated fuel rod then increased up to 669 K. Core uncovery took place before second LSC induced by steam condensation on ACC coolant. The core liquid level recovered rapidly after second LSC. The maximum fuel rod surface temperature was 772 K. The continuous core cooling was confirmed because of coolant injection by LPI system. This report summarizes the test procedures, conditions and major observation.

Journal Articles

Effects of secondary depressurization on core cooling in PWR vessel bottom small break LOCA experiments with HPI failure and gas inflow

Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

Journal of Nuclear Science and Technology, 43(1), p.55 - 64, 2006/01

 Times Cited Count:10 Percentile:56.00(Nuclear Science & Technology)

Effects of non-condensable gas from the accumulator tanks on secondary depressurization, as one of accident management (AM) measures in case of high pressure injection system failure, are studied at the ROSA-V/LSTF experiments simulating a ten instrument-tube break LOCA at the PWR vessel bottom. In an experiment with no gas inflow, the secondary depressurization at -55 K/h initiated by SI signal with 10 minutes delay succeeded in the LPI actuation. On the other hand, the gas inflow in another experiment degraded the primary depressurization and resulted in core uncovery before the LPI start. The third experiment with rapid secondary depressurization and continuous auxiliary feedwater supply, however, showed a possibility of long-term core cooling by the LPI actuation. RELAP5/MOD3 code analyses well predicted these experiment results and clarified that condensation heat transfer was largely degraded by the gas in the U-tubes. In addition, a primary pressure - coolant mass map was found to be useful for indication of key plant parameters of AM measures.

Journal Articles

Results from studies on high burn-up fuel behavior under LOCA conditions

Nagase, Fumihisa; Fuketa, Toyoshi

NUREG/CP-0192, p.197 - 230, 2005/10

The Japanese regulatory criterion for a loss-of-coolant-accident (LOCA) is based on a threshold of fuel rod fracture during quenching, which was experimentally determined under simulated LOCA conditions. In order to evaluate the fracture threshold of high burn-up fuel rods, JAERI performs integral thermal shock tests simulating LOCA conditions. The tests have been performed with pre-hydrided, unirradiated claddings and high burn-up fuel claddings irradiated to 39 and 44 GWd/t at a PWR. It was shown that fracture/no-fracture threshold primarily depends on the oxidation amount and that the threshold decreases with increases in hydrogen concentration and axial restraint during the quench. It was also shown that fracture conditions of the tested high burn-up fuel claddings are consistent with the fracture threshold derived from unirradiated claddings with similar hydrogen concentrations.

Journal Articles

A ROSA-V experimental study on PWR accident management actions and role of reactor instrumentation

Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

Nihon Kikai Gakkai 2005-Nendo Nenji Taikai Koen Rombunshu, Vol.3, p.223 - 224, 2005/09

Shown below are experimental results on characteristics of reactor instrumentations including a coolant mass tracking method and core exit thermocouples (CETs) which are necessary to precise operator actions for accident management (AM) during a loss-of-coolant accident (LOCA) at a pressurized water reactor (PWR). The experiments at the ROSA-V/LSTF facility of the Japan Atomic Energy Research Institute simulated small break LOCAs at the PWR vessel bottom and clarified effects of secondary depressurization as one of the AM measures in case of high pressure injection system failure and non-condensable gas inflow from the accumulator injection system. It was shown that the coolant mass tracking method based on three types of water level instruments could detect most of the primary coolant mass change between the initial state and core-heatup starting condition. The CET characteristics to detect the core heatup conditions were significantly degraded by the condensed water fall-back during the secondary depressurization action.

JAEA Reports

Experimental study on secondary depressurization action for PWR vessel bottom small break LOCA with HPI failure and gas inflow (ROSA-V/LSTF test SB-PV-03)

Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

JAERI-Research 2005-014, 170 Pages, 2005/06

JAERI-Research-2005-014.pdf:7.64MB

A small break LOCA (SBLOCA) experiment was conducted at the LSTF of ROSA-V program to study effects of accident management (AM) on core cooling, which is important in case of high pressure injection (HPI) system failure during an SBLOCA at a PWR. The experiment, SB-PV-03, simulated ten instrument-tube break LOCA at the PWR vessel bottom equivalent to 0.2% cold leg break, total HPI failure, non-condensable gas inflow from accumulator injection system (AIS) and AM actions on secondary depressurization at -55 K/h and auxiliary feedwater (AFW) supply for 30 minutes. It was clarified that the AM actions were effective on primary depressurization until AIS injection end at 1.6 MPa, but thereafter became less effective by the gas inflow, resulting in low pressure injection (LPI) delay and whole core heatup under continuous water discharge at the break. The report describes these phenomena including core heatup related with primary coolant mass and AM actions, primary-to-secondary heat transfer analysis and estimation of gas in the primary loops.

Journal Articles

Thermal-hydraulic responses during PWR pressure vessel upper head small break LOCA based on LSTF experiment and analysis

Takeda, Takeshi; Asaka, Hideaki; Suzuki, Mitsuhiro; Nakamura, Hideo

Proceedings of 13th International Conference on Nuclear Engineering (ICONE-13) (CD-ROM), 8 Pages, 2005/05

no abstracts in English

Journal Articles

Effects of secondary depressurization on PWR bottom small break LOCA experiments in case of HPI failure and non-condensable gas inflow

Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

Proceedings of 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-6) (CD-ROM), 14 Pages, 2004/10

no abstracts in English

Journal Articles

Results from simulated LOCA experiments with high burnup PWR fuel claddings

Nagase, Fumihisa; Fuketa, Toyoshi

Proceedings of 2004 International Meeting on LWR Fuel Performance, p.500 - 506, 2004/09

A systematic research program is being conducted at the Japan Atomic Energy Research Institute (JAERI), which aims at a wide range database for evaluating the influence of further burnup extension on fuel behavior under LOCA conditions. As a part of the program, integral thermal shock tests simulating the whole LOCA sequence have been conducted with Zircaloy-4 fuel claddings, irradiated to 39 and 44GWd/t at a PWR. One cladding, oxidized to about 30% ECR, fractured during the quench. The fracture condition agrees with the fracture criteria for non-irradiated claddings that have similar hydrogen concentrations (about 25% ECR). Two claddings, oxidized to about 16 and 18% ECR, survived the quench, indicating that fracture/non-fracture boundary is not reduced so significantly by irradiation for the examined burnup range. The present paper describes information obtained from the tests including oxidation kinetics and rupture behavior.

JAEA Reports

229 (Records 1-20 displayed on this page)