Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okumura, Keisuke
Nihon Genshiryoku Gakkai Dai-36-Kai Robutsuri Kaki Semina Tekisuto, p.81 - 102, 2004/08
The modern node method which uses a discontinuous factor has come to be widely used recently in the reactor core analyses of commercial light water reactors. The basic theory, numerical computation technique and examples of calculation results are explained for biginners of the modern nodal method.
Shiroya, Seiji*; Misawa, Tsuyoshi*; Unesaki, Hironobu*; Ichihara, Chihiro*; Kobayashi, Keiji*; Nakamura, Hiroshi*; Shin, Kazuo*; Imanishi, Nobutsugu*; Kanazawa, Satoshi*; Mori, Takamasa
JAERI-Tech 2004-025, 93 Pages, 2004/03
In view of the future plan of Research Reactor Institute, Kyoto University, the present study consisted of (1) the transmission experiments of high energy neutrons through materials, (2) experimental simulation of ADSR using the Kyoto University Critical Assembly(KUCA), and (3) conceptual neutronics design study on KUR type ADSR using the MCNP-X code. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR, which is indispensable to promote the study on ADSR, was obtained both theoretically and experimentally. For the realization of ADSR, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable (1) to compile the more precise nuclear data for the wide energy range, (2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement, and (3) to develop neutronics calculation tools which take into account the neutron generation process by the spallation reaction and the delayed neutron behavior.
Iwamura, Takamichi; Okubo, Tsutomu; Kureta, Masatoshi; Nakatsuka, Toru; Takeda, Renzo*; Yamamoto, Kazuhiko*
Proceedings of 13th Pacific Basin Nuclear Conference (PBNC 2002) (CD-ROM), 7 Pages, 2002/10
In order to ensure sustainable energy supply in Japan, the reduced-moderation water reactor (RMWR) has been developed by JAERI since 1998. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio. In order to establish negative void reactivity coefficient, the core should be short and flat to increase neutron leakage from the core. The core designs were accomplished to a large core with 1,356MWe and a small core with 330MWe. For both cores, negative void coefficient and natural circulation cooling of the core were realized. To confirm thermal-hydraulic feasibility, critical heat flux experiments were performed using 7-rod bundles with the gap width of 1mm and 1.3mm. The results indicated that enough cooling was assured for the tight lattice core. Further R&D studies, including large scale thermal-hydraulic experiments, reactor physics experiments, development of high burn-up fuel cladding material and simplified reprocessing technology, are necessary to realize commercial introduction of RMWR by 2020's for the replacement of current generation LWRs.
Research Committee on Reactor Physics
JAERI-Review 2001-047, 180 Pages, 2002/02
Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) was set in July 1999 to review and investigate special subjects related to reactor physics research for the Accelerator-Driven Subcritical System (ADS).The ADS-WP, at the first meeting, discussed a task guideline of its activity for two years and decided to concentrate upon three subjects: (1) neutron transport calculations in high energy range, (2) static and kinetic (safety-related) characteristics of subcritical system, and (3) system design including ADS concepts and elemental technology developments required.The activity of ADS-WP continued from July 1999 to March 2001. In this duration, the members of ADS-WP met together four times and discussed the above subjects. In addition, the ADS-WP conducted a questionnaire on requests and proposals for the plan of Transmutation Physics Experimental Facility in the High-Intensity Proton Accelerator Project, which is a joint project between JAERI and KEK (High Energy Accelerator Research Organization).This report summarizes the results obtained by the above ADS-WP activity. The report will be useful to overview those results and moreover to set up a new guideline of future research activity in this field.
Yamane, Tsuyoshi; Yamashita, Kiyonobu; Fujimoto, Nozomu
New approaches to the nuclear fuel cycles and related disposal schemes, 1, p.267 - 277, 1998/00
no abstracts in English
Yamashita, Kiyonobu; Nojiri, Naoki; Fujimoto, Nozomu; Nakano, Masaaki*; Ando, Hiroei; Nagao, Yoshiharu; Nagaya, Yasunobu; Akino, Fujiyoshi; Takeuchi, Mitsuo; Fujisaki, Shingo; et al.
Proc. of IAEA TCM on High Temperature Gas Cooled Reactor Applications and Future Prospects, p.185 - 197, 1998/00
no abstracts in English
Murao, Yoshio
Nihon Genshiryoku Gakkai-Shi, 37(9), p.784 - 787, 1995/00
no abstracts in English
Research Committee on Reactor Physics
JAERI-M 93-254, 36 Pages, 1994/01
no abstracts in English
Research Committee on Reactor Physics
JAERI-M 92-209, 43 Pages, 1993/01
no abstracts in English
Naka Fusion Research Establishment
JAERI-M 91-159, 131 Pages, 1991/10
no abstracts in English
Nuclear Science and Engineering, 97, p.145 - 160, 1987/00
Times Cited Count:2 Percentile:29.51(Nuclear Science & Technology)no abstracts in English
; ; ; ; ; ; ; Iida, Hiromasa
JAERI-M 83-174, 38 Pages, 1983/10
no abstracts in English