Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fine SiC fiber synthesized from organosilicon polymers; Relationship between spinning temperature and melt viscosity of precursor polymers

Idesaki, Akira; Narisawa, Masaki*; Okamura, Kiyohito*; Sugimoto, Masaki; Tanaka, Shigeru; Morita, Yosuke; Seguchi, Tadao; Ito, Masayoshi*

Journal of Materials Science, 36(23), p.5565 - 5569, 2001/12

 Times Cited Count:36 Percentile:77.69(Materials Science, Multidisciplinary)

A very fine silicon carbide (SiC) fiber with diameter of 6 $$mu$$ m, about a half of that of a commercially available SiC fiber, was synthesized from a polymer blend of polycarbosilane (PCS) and polyvinylsilane (PVS). The fine SiC fiber was obtained by optimizing the composition and the spinning temperature of PCS-PVS polymer blends. In order to determine these optimum conditions, the relationship between temperature and melt viscosities of the polymer blends was investigated. As a result, it was found that the optimum spinning temperature range was within a temperature range where the melt viscosity is 5-10Pa$$cdot$$s. Moreover, by blending PVS with PCS, the spinning temperature of the polymer blends was lowered, the spinnability of polymer system was improved, and finer polymer fiber was obtained compared with PCS. The optimum content of PVS in the polymer blend was 15-20wt%.

Journal Articles

Development of SiC/SiC composites from Si-based polymer blend by radiation application

Sugimoto, Masaki; Tanaka, Shigeru; Ito, Masayoshi*; Okamura, Kiyohito*

High Temperature Ceramic Matrix Composites, p.357 - 361, 2001/10

no abstracts in English

Journal Articles

Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing

Idesaki, Akira*; Narisawa, Masaki*; Okamura, Kiyohito*; Sugimoto, Masaki; Morita, Yosuke; Seguchi, Tadao; Ito, Masayoshi*

Journal of Materials Science, 36(2), p.357 - 362, 2001/01

 Times Cited Count:15 Percentile:54.95(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Fine silicon carbide fiber synthesized from a silicon-based polymer blend using radiation curing

Idesaki, Akira; Sugimoto, Masaki; Tanaka, Shigeru; Morita, Yosuke; Narisawa, Masaki*; Okamura, Kiyohito*; Ito, Masayoshi*

High Temperature Ceramic Matrix Composites, p.35 - 40, 2001/00

Silicon carbide (SiC) fiber, which is one of the likeliest candidates as a reinforcement fiber of ceramic matrix composites (CMCs), is synthesized from polycarbosilane (PCS). The diameter of thus SiC fibers is 10-15 $$mu$$m. In order to fabricate CMCs with 3-dimensional complex shapes, it is important to develop a SiC fiber with diameter of less than 10 $$mu$$m, flexibility, and high strength. In order to improve the spinnability of precursor polymer, we have blended polyvinylsilane (PVS), which is a liquid polymer at room temperature, to PCS as a spinning additive. According to relationship between temperature and melt viscosity of the polymer blend, it was found that the polymer can be melt-spun at about 490K, 110K lower than PCS (about 600K), and that the spinnability of the polymer is improved by blending PVS. Fine polymer fiber was obtained from the polymer blend, and finally, very fine SiC fiber with the average diameter of 6 $$mu$$m was synthesized from the PCS-PVS polymer blend.

4 (Records 1-4 displayed on this page)
  • 1